Paracrine factors in tubuloglomerular feedback: adenosine, ATP, and nitric oxide. 2003

Jürgen Schnermann, and David Z Levine
National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1370, USA. jurgens@intra.niddk.nih.gov

The tubuloglomerular feedback response, the change in afferent arteriolar tone caused by a change in NaCl concentration at the macula densa, is likely initiated by the generation of a vasoactive mediator within the confines of the juxtaglomerular apparatus. Substantial progress has been made in identifying the nature of this mediator and the factors that modulate its effect on vascular tone. In support of earlier studies using P1 purinergic antagonists, the application of the knockout technique has shown that adenosine 1 receptors are absolutely required for eliciting TGF responses. The background level of angiotensin II appears to be an important cofactor determining the efficiency of A1AR-induced vasoconstriction, probably through a synergistic interaction at the level of the G protein-dependent transduction mechanism. The source of the adenosine is still unclear, but it is conceivable that adenosine is generated extracellularly from released ATP through a cascade of ecto-nucleotidases. There is also evidence that ATP may activate P2 receptors in preglomerular vessels, which may contribute to autoregulation of renal vascular resistance. Nitric oxide (NO), generated by the neuronal isoform of nitric oxide synthase in macula densa cells, reduces the constrictor effect of adenosine, but the regulation of NO release and its exact role in states of TGF-induced hyperfiltration are still unclear.

UI MeSH Term Description Entries
D007678 Kidney Glomerulus A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue. Glomerulus, Kidney
D007684 Kidney Tubules Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER. Kidney Tubule,Tubule, Kidney,Tubules, Kidney
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D019899 Paracrine Communication Cellular signaling in which a factor secreted by a cell affects other cells in the local environment. This term is often used to denote the action of INTERCELLULAR SIGNALING PEPTIDES AND PROTEINS on surrounding cells. Paracrine Signaling,Communication, Paracrine,Communications, Paracrine,Paracrine Communications,Paracrine Signalings,Signaling, Paracrine,Signalings, Paracrine
D025461 Feedback, Physiological A mechanism of communication with a physiological system for homeostasis, adaptation, etc. Physiological feedback is mediated through extensive feedback mechanisms that use physiological cues as feedback loop signals to control other systems. Feedback, Biochemical,Feedback Inhibition, Biochemical,Feedback Regulation, Biochemical,Feedback Stimulation, Biochemical,Negative Feedback, Biochemical,Positive Feedback, Biochemical,Biochemical Feedback,Biochemical Feedback Inhibition,Biochemical Feedback Inhibitions,Biochemical Feedback Regulation,Biochemical Feedback Regulations,Biochemical Feedback Stimulation,Biochemical Feedback Stimulations,Biochemical Feedbacks,Biochemical Negative Feedback,Biochemical Negative Feedbacks,Biochemical Positive Feedback,Biochemical Positive Feedbacks,Feedback Inhibitions, Biochemical,Feedback Regulations, Biochemical,Feedback Stimulations, Biochemical,Feedback, Biochemical Negative,Feedback, Biochemical Positive,Feedbacks, Biochemical,Feedbacks, Biochemical Negative,Feedbacks, Biochemical Positive,Feedbacks, Physiological,Inhibition, Biochemical Feedback,Inhibitions, Biochemical Feedback,Negative Feedbacks, Biochemical,Physiological Feedback,Physiological Feedbacks,Positive Feedbacks, Biochemical,Regulation, Biochemical Feedback,Regulations, Biochemical Feedback,Stimulation, Biochemical Feedback,Stimulations, Biochemical Feedback

Related Publications

Jürgen Schnermann, and David Z Levine
October 2002, Acta physiologica Scandinavica,
Jürgen Schnermann, and David Z Levine
May 1999, Seminars in nephrology,
Jürgen Schnermann, and David Z Levine
January 1997, Blood purification,
Jürgen Schnermann, and David Z Levine
October 2004, Kidney international,
Jürgen Schnermann, and David Z Levine
July 2002, American journal of physiology. Regulatory, integrative and comparative physiology,
Jürgen Schnermann, and David Z Levine
June 1996, Kidney international. Supplement,
Jürgen Schnermann, and David Z Levine
January 2007, Acta physiologica (Oxford, England),
Jürgen Schnermann, and David Z Levine
July 2002, American journal of physiology. Regulatory, integrative and comparative physiology,
Jürgen Schnermann, and David Z Levine
February 2011, American journal of physiology. Renal physiology,
Jürgen Schnermann, and David Z Levine
October 1994, The American journal of physiology,
Copied contents to your clipboard!