Redox events in HTLV-1 Tax-induced apoptotic T-cell death. 2002

Katerina Chlichlia, and Marek Los, and Klaus Schulze-Osthoff, and Louis Gazzolo, and Volker Schirrmacher, and Khashayarsha Khazaie
Division of Cellular Immunology (G0100), Tumor Immunology Program, German Cancer Research Center, Im Neuenheimer Feld 280, D69120 Heidelberg, Germany. katerina.chlichlia@urz.uni-heidelberg.de

A number of studies implicate reactive oxygen intermediates in the induction of DNA damage and apoptosis. Recent studies suggest that the human T-cell leukemia virus type 1 (HTLV-1) Tax protein induces oxidative stress and apoptotic T-cell death. Activation of the T-cell receptor/CD3 pathway enhances the Tax-mediated oxidative and apoptotic effects. Tax-mediated apoptosis and oxidative stress as well as activation of nuclear factor-kappaB can be potently suppressed by antioxidants. This review focuses on Tax-dependent changes in the intracellular redox status and their role in Tax-mediated DNA damage and apoptosis. The relevance of these observations to HTLV-1 virus-mediated T-cell transformation and leukemogenesis are discussed.

UI MeSH Term Description Entries
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D015368 Human T-lymphotropic virus 1 A strain of PRIMATE T-LYMPHOTROPIC VIRUS 1 isolated from mature T4 cells in patients with T-lymphoproliferation malignancies. It causes adult T-cell leukemia (LEUKEMIA-LYMPHOMA, T-CELL, ACUTE, HTLV-I-ASSOCIATED), T-cell lymphoma (LYMPHOMA, T-CELL), and is involved in mycosis fungoides, SEZARY SYNDROME and tropical spastic paraparesis (PARAPARESIS, TROPICAL SPASTIC). ATLV,Adult T-Cell Leukemia-Lymphoma Virus I,HTLV-1,HTLV-I,Human T-Cell Leukemia Virus I,Leukemia Virus I, Human T-Cell,T-Cell Leukemia Virus I, Human,Adult T Cell Leukemia Lymphoma Virus I,Human T Cell Leukemia Virus I,Leukemia Lymphoma Virus I, Adult T Cell,Leukemia Virus I, Human T Cell,T Cell Leukemia Virus I, Human,Human T lymphotropic virus 1
D015459 Leukemia-Lymphoma, Adult T-Cell Aggressive T-Cell malignancy with adult onset, caused by HUMAN T-LYMPHOTROPIC VIRUS 1. It is endemic in Japan, the Caribbean basin, Southeastern United States, Hawaii, and parts of Central and South America and sub-Saharan Africa. ATLL,HTLV I Associated T Cell Leukemia Lymphoma,HTLV-Associated Leukemia-Lymphoma,HTLV-I-Associated T-Cell Leukemia-Lymphoma,Human T Lymphotropic Virus Associated Leukemia Lymphoma,Human T Lymphotropic Virus-Associated Leukemia-Lymphoma,Human T-Cell Leukemia-Lymphoma,Leukemia Lymphoma, Adult T Cell,Leukemia Lymphoma, T Cell, Acute, HTLV I Associated,Leukemia, Adult T-Cell,Leukemia-Lymphoma, T-Cell, Acute, HTLV-I-Associated,T Cell Leukemia Lymphoma, HTLV I Associated,T Cell Leukemia, Adult,T-Cell Leukemia, Adult,T-Cell Leukemia-Lymphoma, Adult,T-Cell Leukemia-Lymphoma, HTLV-I-Associated,Adult T-Cell Leukemia,Adult T-Cell Leukemia-Lymphoma,Adult T-Cell Leukemia-Lymphomas,Adult T-Cell Leukemias,HTLV Associated Leukemia Lymphoma,HTLV-Associated Leukemia-Lymphomas,HTLV-I-Associated T-Cell Leukemia-Lymphomas,Human T Cell Leukemia Lymphoma,Human T-Cell Leukemia-Lymphomas,Leukemia, Adult T Cell,Leukemia-Lymphoma, HTLV-Associated,Leukemia-Lymphoma, HTLV-I-Associated T-Cell,Leukemia-Lymphoma, Human T-Cell,Leukemia-Lymphomas, Adult T-Cell,Leukemia-Lymphomas, HTLV-Associated,Leukemia-Lymphomas, HTLV-I-Associated T-Cell,Leukemia-Lymphomas, Human T-Cell,Leukemias, Adult T-Cell,T Cell Leukemia Lymphoma, Adult,T-Cell Leukemia-Lymphoma, Human,T-Cell Leukemia-Lymphomas, Adult,T-Cell Leukemia-Lymphomas, HTLV-I-Associated,T-Cell Leukemia-Lymphomas, Human,T-Cell Leukemias, Adult
D016328 NF-kappa B Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA. Immunoglobulin Enhancer-Binding Protein,NF-kappa B Complex,Nuclear Factor kappa B,Transcription Factor NF-kB,kappa B Enhancer Binding Protein,Ig-EBP-1,NF-kB,NF-kappaB,Nuclear Factor-Kappab,Complex, NF-kappa B,Enhancer-Binding Protein, Immunoglobulin,Factor NF-kB, Transcription,Factor-Kappab, Nuclear,Ig EBP 1,Immunoglobulin Enhancer Binding Protein,NF kB,NF kappa B Complex,NF kappaB,NF-kB, Transcription Factor,Nuclear Factor Kappab,Transcription Factor NF kB
D016356 Gene Products, tax Transcriptional trans-acting proteins of the promoter elements found in the long terminal repeats (LTR) of HUMAN T-LYMPHOTROPIC VIRUS 1 and HUMAN T-LYMPHOTROPIC VIRUS 2. The tax (trans-activator x; x is undefined) proteins act by binding to enhancer elements in the LTR. Trans-Activator Protein p40(tax),Trans-Activator Protein p40(x),p40(tax),tax Gene Products,tax Protein,Gene Product, tax,Trans-Activator Protein p40(lor),Trans-Activator Protein p40x,Trans-Activator Protein pX,Transactivator Protein p40(x),Transactivator p40(tax),Transforming Antigen p40x,p40 tax,Antigen p40x, Transforming,Trans Activator Protein p40x,Trans Activator Protein pX,p40x, Trans-Activator Protein,p40x, Transforming Antigen,pX, Trans-Activator Protein,tax Gene Product

Related Publications

Katerina Chlichlia, and Marek Los, and Klaus Schulze-Osthoff, and Louis Gazzolo, and Volker Schirrmacher, and Khashayarsha Khazaie
May 1997, Oncogene,
Katerina Chlichlia, and Marek Los, and Klaus Schulze-Osthoff, and Louis Gazzolo, and Volker Schirrmacher, and Khashayarsha Khazaie
November 2010, Chemico-biological interactions,
Katerina Chlichlia, and Marek Los, and Klaus Schulze-Osthoff, and Louis Gazzolo, and Volker Schirrmacher, and Khashayarsha Khazaie
April 2000, Oncogene,
Katerina Chlichlia, and Marek Los, and Klaus Schulze-Osthoff, and Louis Gazzolo, and Volker Schirrmacher, and Khashayarsha Khazaie
January 2007, Frontiers in bioscience : a journal and virtual library,
Katerina Chlichlia, and Marek Los, and Klaus Schulze-Osthoff, and Louis Gazzolo, and Volker Schirrmacher, and Khashayarsha Khazaie
August 2018, Cancer science,
Katerina Chlichlia, and Marek Los, and Klaus Schulze-Osthoff, and Louis Gazzolo, and Volker Schirrmacher, and Khashayarsha Khazaie
February 2019, Blood advances,
Katerina Chlichlia, and Marek Los, and Klaus Schulze-Osthoff, and Louis Gazzolo, and Volker Schirrmacher, and Khashayarsha Khazaie
January 2001, Virus genes,
Katerina Chlichlia, and Marek Los, and Klaus Schulze-Osthoff, and Louis Gazzolo, and Volker Schirrmacher, and Khashayarsha Khazaie
June 2013, Pathogens and global health,
Katerina Chlichlia, and Marek Los, and Klaus Schulze-Osthoff, and Louis Gazzolo, and Volker Schirrmacher, and Khashayarsha Khazaie
January 1998, BioFactors (Oxford, England),
Katerina Chlichlia, and Marek Los, and Klaus Schulze-Osthoff, and Louis Gazzolo, and Volker Schirrmacher, and Khashayarsha Khazaie
October 2004, Journal of virology,
Copied contents to your clipboard!