The two histidine axial ligands of the primary electron donor chlorophylls (P700) in photosystem I are similarly perturbed upon P700+ formation. 2002

Jacques Breton, and Wu Xu, and Bruce A Diner, and Parag R Chitnis
Service de Bioénergétique, CEA-Saclay, 91191 Gif-sur-Yvette, France. cadara3@dsvidf.cea.fr

The extent of delocalization of the positive charge in the oxidized dimer of chlorophyll (Chl) constituting P700, the primary electron donor of photosystem I (PSI), has been investigated by analyzing the perturbation upon P700(+) formation of infrared (IR) vibrational modes of the two His axial ligands of the two P700 Chl molecules. Fourier transform IR (FTIR) difference spectra of the photooxidation of P700 in PSI core complexes isolated from Synechocystis sp. PCC 6803 isotopically labeled either globally with (15)N or more specifically with (13)C on all the His residues reveal isotopic shifts of a differential signal at 1102/1108 cm(-)(1). This signal is assigned to a downshift upon P700(+) formation of the predominantly C(5)-Ntau imidazole stretching mode of His residue(s). The amplitude of this signal is reduced by approximately half in FTIR spectra of Synechocystis mutants in which His PsaB 651, the axial ligand to one of the two Chl molecules in P700, is replaced by Cys, Gln, or Leu. These observations provide further evidence that the positive charge in P700(+) is essentially delocalized over the two Chl molecules, in agreement with a previous FTIR study in which the frequency of the vibrational modes of the 9-keto and 10a-ester C=O groups of the two Chl's in P700, P700(+), and (3)P700 were firmly established for the first time [Breton, J., et al. (1999) Biochemistry 38, 11585-11592]. Only limited perturbations of the amplitude and frequency of the 9-keto and 10a-ester C=O bands of the P700 Chl are elicited by the mutations. On the basis of comparable mutational studies of the primary electron donor in purple bacteria, these perturbations are attributed to small molecular rearrangements of the Chl macrocycle and substituents caused by the repositioning of the P700 dimer in the new protein cavity generated by the mutations. It is proposed that the perturbation of the FTIR spectra upon mutation of a His axial ligand of the P700 Chl recently reported in Chlamydomonas reinhardtii [Hastings, G., et al. (2001) Biochemistry 40, 12943-12949] can be explained by the same effect without the need for a new assignment of the C=O bands of P700. The distribution of charge/spin in P700(+) and (3)P700 determined by FTIR spectroscopy is discussed in relation with the contrasting interpretations derived from recent magnetic resonance experiments.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009587 Nitrogen Isotopes Stable nitrogen atoms that have the same atomic number as the element nitrogen but differ in atomic weight. N-15 is a stable nitrogen isotope. Nitrogen Isotope,Isotope, Nitrogen,Isotopes, Nitrogen
D002734 Chlorophyll Porphyrin derivatives containing magnesium that act to convert light energy in photosynthetic organisms. Phyllobilins,Chlorophyll 740
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D000458 Cyanobacteria A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE. Algae, Blue-Green,Blue-Green Bacteria,Cyanophyceae,Algae, Blue Green,Bacteria, Blue Green,Bacteria, Blue-Green,Blue Green Algae,Blue Green Bacteria,Blue-Green Algae
D017550 Spectroscopy, Fourier Transform Infrared A spectroscopic technique in which a range of wavelengths is presented simultaneously with an interferometer and the spectrum is mathematically derived from the pattern thus obtained. FTIR,Fourier Transform Infrared Spectroscopy,Spectroscopy, Infrared, Fourier Transform
D045322 Photosynthetic Reaction Center Complex Proteins Protein complexes that take part in the process of PHOTOSYNTHESIS. They are located within the THYLAKOID MEMBRANES of plant CHLOROPLASTS and a variety of structures in more primitive organisms. There are two major complexes involved in the photosynthetic process called PHOTOSYSTEM I and PHOTOSYSTEM II. Photosynthetic Complex,Photosynthetic Reaction Center,Photosynthetic Reaction Center Complex Protein,Photosynthetic Complexes,Photosynthetic Reaction Centers,Center, Photosynthetic Reaction,Complex, Photosynthetic,Complexes, Photosynthetic,Reaction Center, Photosynthetic,Reaction Centers, Photosynthetic
D045331 Photosystem I Protein Complex A large multisubunit protein complex that is found in the THYLAKOID MEMBRANE. It uses light energy derived from LIGHT-HARVESTING PROTEIN COMPLEXES to drive electron transfer reactions that result in either the reduction of NADP to NADPH or the transport of PROTONS across the membrane. Photosystem I Reaction Center,Photosystem I

Related Publications

Jacques Breton, and Wu Xu, and Bruce A Diner, and Parag R Chitnis
October 2001, Biochimica et biophysica acta,
Jacques Breton, and Wu Xu, and Bruce A Diner, and Parag R Chitnis
July 1991, FEBS letters,
Jacques Breton, and Wu Xu, and Bruce A Diner, and Parag R Chitnis
September 1997, FEBS letters,
Jacques Breton, and Wu Xu, and Bruce A Diner, and Parag R Chitnis
July 2001, FEBS letters,
Jacques Breton, and Wu Xu, and Bruce A Diner, and Parag R Chitnis
July 1994, Biochemistry,
Jacques Breton, and Wu Xu, and Bruce A Diner, and Parag R Chitnis
October 2001, Biochemistry,
Jacques Breton, and Wu Xu, and Bruce A Diner, and Parag R Chitnis
January 2021, The journal of physical chemistry. B,
Copied contents to your clipboard!