Identification of up-regulated genes in human uterine leiomyoma by suppression subtractive hybridization. 2002

Bin Li, and Yong Lian Zhang
State Key Laboratory of Molecular Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

In searching for differentially expressed genes in human uterine leiomyomas (ULs), suppression subtractive hybridization was used to construct an UL up-regulated library, which turned out to represent 88 genes. After two rounds of screening by reverse Northern analysis, twenty genes were proved to be up-regulated, including seventeen known genes and three genes with unknown function. All these genes were firstly associated with UL. Three genes with notable difference were selected for Northern confirmation. Our results proved the authenticity of the twenty genes. One gene named Phospholipase A2 (PLA2) showed up-regulation in 4/6 of the patients and investigation of tissue distribution indicated that it had obvious expression in prostate, testis, liver, heart and skeletal muscle.

UI MeSH Term Description Entries
D007889 Leiomyoma A benign tumor derived from smooth muscle tissue, also known as a fibroid tumor. They rarely occur outside of the UTERUS and the GASTROINTESTINAL TRACT but can occur in the SKIN and SUBCUTANEOUS TISSUE, probably arising from the smooth muscle of small blood vessels in these tissues. Fibroid,Fibroid Tumor,Fibroid Uterus,Fibroids, Uterine,Fibroma, Uterine,Fibromyoma,Leiomyoma, Uterine,Fibroid Tumors,Fibroid, Uterine,Fibroids,Fibromas, Uterine,Fibromyomas,Leiomyomas,Tumor, Fibroid,Tumors, Fibroid,Uterine Fibroid,Uterine Fibroids,Uterine Fibroma,Uterine Fibromas,Uterus, Fibroid
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D014594 Uterine Neoplasms Tumors or cancer of the UTERUS. Cancer of Uterus,Uterine Cancer,Cancer of the Uterus,Neoplasms, Uterine,Neoplasms, Uterus,Uterus Cancer,Uterus Neoplasms,Cancer, Uterine,Cancer, Uterus,Cancers, Uterine,Cancers, Uterus,Neoplasm, Uterine,Neoplasm, Uterus,Uterine Cancers,Uterine Neoplasm,Uterus Cancers,Uterus Neoplasm
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation

Related Publications

Bin Li, and Yong Lian Zhang
January 2001, Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica,
Bin Li, and Yong Lian Zhang
August 2000, Parasitology today (Personal ed.),
Bin Li, and Yong Lian Zhang
November 2001, British journal of cancer,
Bin Li, and Yong Lian Zhang
August 2001, Biochemical and biophysical research communications,
Copied contents to your clipboard!