Vaccinia virus infection of HeLa cells. I. Synthesis of vaccinia DNA in host cell nuclei. 1975

P LaColla, and A Weissbach

The replication of vaccinia virus is thought to take place exclusively in the cytoplasm of host cells. However, using DNA-DNA hybridization techniques, it can be shown that a significant fraction of the synthesis of vaccinia DNA takes place in the nucleus as well as the cytoplasm. The (3H) thymiding pulse-labeled vaccinia DNA synthesized in the nucleus reaches a maximum at about 3 h after infection, corresponding to the time of maximal DNA synthesis in infected cells. At this time host DNA synthesis drops to about 25% of the rate of the uninfected cells. Even with short labeling times (2 min) the nucleus is found to contain 60% of the incorporated (3H)thymidine, much of which is in vaccinia DNA. Prior inhibition of host nuclear DNA synthesis with mitomycin C, followed by removal of the antibiotic causes a subsequent inhibition of vaccinia DNA synthesis and complete suppression of mature virus. Purified nuclei, isolated from vaccinia-infected cells, also synthesize vaccinia DNA in vitro. Over 90% of the DNA synthesized in vitro by isolated nuclei contain vaccinia-specific sequences.

UI MeSH Term Description Entries
D008937 Mitomycins A group of methylazirinopyrroloindolediones obtained from certain Streptomyces strains. They are very toxic antibiotics used as ANTINEOPLASTIC AGENTS in some solid tumors. PORFIROMYCIN and MITOMYCIN are the most useful members of the group.
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005260 Female Females

Related Publications

P LaColla, and A Weissbach
December 1983, The Journal of general virology,
P LaColla, and A Weissbach
January 1979, The Journal of general virology,
P LaColla, and A Weissbach
October 1984, The Journal of general virology,
P LaColla, and A Weissbach
January 1984, Journal of virology,
P LaColla, and A Weissbach
April 1963, Virology,
P LaColla, and A Weissbach
June 1963, Journal of biochemistry,
P LaColla, and A Weissbach
November 1973, Proceedings of the National Academy of Sciences of the United States of America,
P LaColla, and A Weissbach
July 1963, Nature,
Copied contents to your clipboard!