Functional relationship between the ADP/ATP-carrier and the F1-ATPase in mitochondria. 1975

P V Vignais, and P M Vignais, and J Doussiere

1. The distribution of labeled and unlabeled adenine-nucleotides inside and outside mitochondria was followed after addition of [14C]ADP to rat liver mitochondria. Two types of mitochondria were used: 1, respiring mitochondria which were carrying out oxidative phosphorylation and which had been replenished in ATP by incubation in a medium supplemented with succinate and phosphate; 2, non-respiring mitochondria which had been partially depleted of ATP by incubation in a medium supplemented with rotenone and phosphate. During the first minute following addition of [14C]ADP to the respiring mitochondria, the pre-existing intramitochondrial (internal) [12C]ATP was released into the medium and replaced by newly synthesized [14C]ATP. No [14C]ADP accumulated in the mitochondria. It is suggested that extramitochondrial (external) ADP entering respiring mitochondria in exchange for internal ATP is phosphorylated to ATP before its complete release in the matrix space. In non-respiring mitochondria, the entry of [14C]ADP into the mitochondria was accompanied by the appearance in the external space of [12C]ADP and [12C]ATP, with a marked predominance of [12C]ADP. Thus in non-respiring mitochondria, the residual internal ATP is dephosphorylated to ADP in the inner membrane before being released outside the mitochondria. 2. When mitochondria were incubated with glutamate, ADP and [32P]phosphate, the [32P]ATP which accumulated in the matrix space became rapidly labeled in both the P gamma and P beta groups of the ATP, due to the presence of a transphosphorylation system in the mitochondrial matrix. The [32P]ATP which accumulated outside the mitochondria was also labeled in the P beta group, although less rapidly than the internal ATP. Our data show that a large fraction (75-80%) of the ATP produced by phosphorylation of added ADP within the inner mitochondrial membrane is released into the matrix space before being transported out from the mitochondria; only a small part (20-25%) is released directly outside the mitochondria without penetrating the matrix space. 3. In respiring and phosphorylating mitochondria, the value of the Km of the ADP-carrier for external ADP was 2-4 times lower than its value in non-respiring and non-phosphorylating mitochondria. 4. The above experimental data are discussed with reference to the topological and functional relationships between the ADP-carrier and the oxidative phosphorylation complex in the inner mitochondrial membrane. They strongly suggest that the ADP-carrier comes to the close neighbourhood of the ATP synthetase on the matrix side of the inner membrane.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

P V Vignais, and P M Vignais, and J Doussiere
January 1985, Annals of the New York Academy of Sciences,
P V Vignais, and P M Vignais, and J Doussiere
October 2008, Biochimica et biophysica acta,
P V Vignais, and P M Vignais, and J Doussiere
November 1977, Proceedings of the National Academy of Sciences of the United States of America,
P V Vignais, and P M Vignais, and J Doussiere
April 2011, The Journal of biological chemistry,
P V Vignais, and P M Vignais, and J Doussiere
June 2001, Biological & pharmaceutical bulletin,
P V Vignais, and P M Vignais, and J Doussiere
June 1987, The Journal of biological chemistry,
P V Vignais, and P M Vignais, and J Doussiere
March 1990, The Biochemical journal,
P V Vignais, and P M Vignais, and J Doussiere
December 2012, Biochemistry,
P V Vignais, and P M Vignais, and J Doussiere
June 1979, Biochimica et biophysica acta,
P V Vignais, and P M Vignais, and J Doussiere
February 1986, Biochimica et biophysica acta,
Copied contents to your clipboard!