Immunostimulatory DNA induces degranulation and NADPH-oxidase activation in human neutrophils while concomitantly inhibiting chemotaxis and phagocytosis. 2002

Johan Bylund, and Marie Samuelsson, and Andrej Tarkowski, and Anna Karlsson, and L Vincent Collins
Phagocyte Research Laboratory, Department of Rheumatology and Inflammation Research, Göteborg University, Guldhedsgatan 10, SE-413 46 Göteborg, Sweden.

We examined the effects of oligodeoxynucleotides (ODN) with different structures and sequences on human neutrophil function. In lymphocytes and monocytes, the CpG-mediated immunostimulation is dependent on motif content, flanking sequences and DNA backbone composition. In neutrophils, however, native phosphodiester ODN were without effect regardless of CpG content, while backbone-substituted phosphorothioate ODN (PS-ODN) modulated neutrophil function in a sequence-independent manner. The neutrophil respiratory burst and degranulation of the specific and gelatinase granules were markedly increased by PS-ODN, as was the shedding of L-selectin. In contrast, neutrophil chemotaxis and phagocytosis were inhibited by PS-ODN. In summary, PS-ODN have both stimulatory and inhibitory effects on neutrophil function. This impact of PS-ODN on neutrophil function is unique and distinct from that exerted on other immune cells, with respect to both the identity of the activating DNA molecules and the regulation of the effector functions. These findings may have implications for the development of DNA-based immunotherapy and vaccination.

UI MeSH Term Description Entries
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D002634 Chemotaxis, Leukocyte The movement of leukocytes in response to a chemical concentration gradient or to products formed in an immunologic reaction. Leukotaxis,Leukocyte Chemotaxis
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000276 Adjuvants, Immunologic Substances that augment, stimulate, activate, potentiate, or modulate the immune response at either the cellular or humoral level. The classical agents (Freund's adjuvant, BCG, Corynebacterium parvum, et al.) contain bacterial antigens. Some are endogenous (e.g., histamine, interferon, transfer factor, tuftsin, interleukin-1). Their mode of action is either non-specific, resulting in increased immune responsiveness to a wide variety of antigens, or antigen-specific, i.e., affecting a restricted type of immune response to a narrow group of antigens. The therapeutic efficacy of many biological response modifiers is related to their antigen-specific immunoadjuvanticity. Immunoactivators,Immunoadjuvant,Immunoadjuvants,Immunologic Adjuvant,Immunopotentiator,Immunopotentiators,Immunostimulant,Immunostimulants,Adjuvant, Immunologic,Adjuvants, Immunological,Immunologic Adjuvants,Immunological Adjuvant,Adjuvant, Immunological,Immunological Adjuvants
D013873 Thionucleotides Nucleotides in which the base moiety is substituted with one or more sulfur atoms.
D015550 Cell Degranulation The process of losing secretory granules (SECRETORY VESICLES). This occurs, for example, in mast cells, basophils, neutrophils, eosinophils, and platelets when secretory products are released from the granules by EXOCYTOSIS. Degranulation, Cell

Related Publications

Johan Bylund, and Marie Samuelsson, and Andrej Tarkowski, and Anna Karlsson, and L Vincent Collins
March 2014, Free radical biology & medicine,
Johan Bylund, and Marie Samuelsson, and Andrej Tarkowski, and Anna Karlsson, and L Vincent Collins
December 1999, Journal of immunology (Baltimore, Md. : 1950),
Johan Bylund, and Marie Samuelsson, and Andrej Tarkowski, and Anna Karlsson, and L Vincent Collins
June 2015, Journal of leukocyte biology,
Johan Bylund, and Marie Samuelsson, and Andrej Tarkowski, and Anna Karlsson, and L Vincent Collins
April 2006, Free radical research,
Johan Bylund, and Marie Samuelsson, and Andrej Tarkowski, and Anna Karlsson, and L Vincent Collins
December 2005, Blood,
Johan Bylund, and Marie Samuelsson, and Andrej Tarkowski, and Anna Karlsson, and L Vincent Collins
April 1993, Journal of leukocyte biology,
Johan Bylund, and Marie Samuelsson, and Andrej Tarkowski, and Anna Karlsson, and L Vincent Collins
July 2006, Journal of leukocyte biology,
Johan Bylund, and Marie Samuelsson, and Andrej Tarkowski, and Anna Karlsson, and L Vincent Collins
October 1981, Journal of immunology (Baltimore, Md. : 1950),
Johan Bylund, and Marie Samuelsson, and Andrej Tarkowski, and Anna Karlsson, and L Vincent Collins
June 2000, Proceedings of the National Academy of Sciences of the United States of America,
Johan Bylund, and Marie Samuelsson, and Andrej Tarkowski, and Anna Karlsson, and L Vincent Collins
December 1992, The Journal of biological chemistry,
Copied contents to your clipboard!