Molecular and physicochemical aspects of local anesthetics acting on nicotinic acetylcholine receptor-containing membranes. 2002

Hugo R Arias, and Michael P Blanton
Departments of Pharmacology and Anesthesiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock 79430, USA. huruar@pharmacology.ufl.edu

Local anesthetics inhibit the ion channel activity of nicotinic acetylcholine receptors in a noncompetitive fashion. This inhibitory action is ascribed to two possible inhibitory mechanisms: an open-channel-blocking mechanism and/or an allosteric process where the drug binds either to the closed channel or to other nonluminal sites, respectively.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000494 Allosteric Regulation The modification of the reactivity of ENZYMES by the binding of effectors to sites (ALLOSTERIC SITES) on the enzymes other than the substrate BINDING SITES. Regulation, Allosteric,Allosteric Regulations,Regulations, Allosteric
D000779 Anesthetics, Local Drugs that block nerve conduction when applied locally to nerve tissue in appropriate concentrations. They act on any part of the nervous system and on every type of nerve fiber. In contact with a nerve trunk, these anesthetics can cause both sensory and motor paralysis in the innervated area. Their action is completely reversible. (From Gilman AG, et. al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed) Nearly all local anesthetics act by reducing the tendency of voltage-dependent sodium channels to activate. Anesthetics, Conduction-Blocking,Conduction-Blocking Anesthetics,Local Anesthetic,Anesthetics, Topical,Anesthetic, Local,Anesthetics, Conduction Blocking,Conduction Blocking Anesthetics,Local Anesthetics,Topical Anesthetics
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D018733 Nicotinic Antagonists Drugs that bind to nicotinic cholinergic receptors (RECEPTORS, NICOTINIC) and block the actions of acetylcholine or cholinergic agonists. Nicotinic antagonists block synaptic transmission at autonomic ganglia, the skeletal neuromuscular junction, and at central nervous system nicotinic synapses. Antagonists, Nicotinic

Related Publications

Hugo R Arias, and Michael P Blanton
September 1984, Biochemical and biophysical research communications,
Hugo R Arias, and Michael P Blanton
December 2001, The Journal of pharmacology and experimental therapeutics,
Hugo R Arias, and Michael P Blanton
October 2007, Journal of neuroscience research,
Hugo R Arias, and Michael P Blanton
August 1965, Biochemische Zeitschrift,
Hugo R Arias, and Michael P Blanton
January 1991, Annals of the New York Academy of Sciences,
Hugo R Arias, and Michael P Blanton
November 1998, Toxicology letters,
Hugo R Arias, and Michael P Blanton
January 2010, Sub-cellular biochemistry,
Hugo R Arias, and Michael P Blanton
April 2000, Neuropharmacology,
Hugo R Arias, and Michael P Blanton
December 2001, Molecular pharmacology,
Copied contents to your clipboard!