Cholinergic modulation of sensory representations in the olfactory bulb. 2002

Christiane Linster, and Thomas A Cleland
Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA. CL243@cornell.edu

We present a computational model of the mammalian olfactory bulb (OB) designed to investigate how cholinergic inputs modulate olfactory sensory representations. The model integrates experimental data derived from diverse physiological studies of cholinergic modulation of OB circuitry into a simulation of bulbar responses to realistic odorants. Experimentally-observed responses to a homologous series of odorants (unbranched aliphatic aldehydes) were simulated; realistic cholinergic inputs to the OB model served to increase the discriminability of the bulbar responses generated to very similar odorants. This simulation predicted, correctly, that missing cholinergic inputs to the OB would result in greater generalization between similar aliphatic aldehydes. Based on the assumption that the overlap between the neural representations of two sensory stimuli is predictive of their perceptual similarity, we tested this prediction in a behavioral experiments with rats. We show that, indeed, rats with selective lesions of cholinergic neurons that project to the OB and cortex discriminate less well between aliphatic aldehydes with similar carbon chain lengths than do rats that received sham lesions.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D002799 Cholinergic Fibers Nerve fibers liberating acetylcholine at the synapse after an impulse. Cholinergic Fiber,Fiber, Cholinergic,Fibers, Cholinergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve

Related Publications

Christiane Linster, and Thomas A Cleland
January 2012, Frontiers in behavioral neuroscience,
Christiane Linster, and Thomas A Cleland
December 2010, Journal of neurophysiology,
Christiane Linster, and Thomas A Cleland
April 2008, Chemical senses,
Christiane Linster, and Thomas A Cleland
October 2001, The Biological bulletin,
Christiane Linster, and Thomas A Cleland
January 2013, Frontiers in neural circuits,
Christiane Linster, and Thomas A Cleland
March 2013, Journal of neurophysiology,
Christiane Linster, and Thomas A Cleland
January 2010, Wiley interdisciplinary reviews. Systems biology and medicine,
Christiane Linster, and Thomas A Cleland
October 2007, The Journal of comparative neurology,
Christiane Linster, and Thomas A Cleland
July 2007, PLoS biology,
Copied contents to your clipboard!