The antinociceptive effect of mirtazapine in mice is mediated through serotonergic, noradrenergic and opioid mechanisms. 2002

Shaul Schreiber, and Tova Rigai, and Yeshayahu Katz, and Chaim G Pick
Department of Psychiatry, Tel-Aviv Sourasky Medical Center, Tel-Aviv University Sackler School of Medicine, Tel-Aviv, Israel.

The antinociceptive effects of the noradrenergic and specific serotonergic antidepressant (NaSSA) drug mirtazapine and its interaction with various opioid receptor subtypes were evaluated in mice with a hotplate analgesicmeter. Mirtazapine elicited an antinociceptive effect in a dose-dependent manner following doses from 1 to 7.5mg/kg. As the mirtazapine dose increased beyond 10mg/kg latencies returned to baseline, yielding a biphasic dose-response curve. The effect of opioid, adrenergic, and serotonergic receptor antagonists was examined as to their ability to block mirtazapine antinociception. Mirtazapine (at 10mg/kg)-induced antinociception was significantly inhibited by naloxone, nor-BNI, and naltrindole, but neither by beta-FNA nor by naloxonazine, implying the involvement of kappa(1)- and delta-opioid mechanisms. When adrenergic and serotonergic antagonists were used, both metergoline and yohimbine, decreased antinociception elicited by mirtazapine, implying a combined serotonergic and noradrenergic mechanism of antinociception. When mirtazapine was administered together with various agonists of the opioid receptor subtypes, it significantly potentiated antinociception mediated only by kappa(3)-opioid receptor subtypes. Summing up these results we conclude that the antinociceptive effect of mirtazapine is mainly influenced by the kappa(3)-opioid receptor subtype combined with both serotonergic and noradrenergic receptors. These results suggest a potential use of mirtazapine in the management of some pain syndromes, and raise questions regarding a possible indirect opioid-dependence induced by mirtazapine. However, further research is needed in order to establish both the exact clinical indications and the effective doses of mirtazapine when prescribed for pain.

UI MeSH Term Description Entries
D008297 Male Males
D008803 Mianserin A tetracyclic compound with antidepressant effects. It may cause drowsiness and hematological problems. Its mechanism of therapeutic action is not well understood, although it apparently blocks alpha-adrenergic, histamine H1, and some types of serotonin receptors. Lerivon,Mianserin Hydrochloride,Mianserin Monohydrochloride,Org GB 94,Tolvon,Hydrochloride, Mianserin,Monohydrochloride, Mianserin
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D009292 Narcotic Antagonists Agents inhibiting the effect of narcotics on the central nervous system. Competitive Opioid Antagonist,Narcotic Antagonist,Opioid Antagonist,Opioid Antagonists,Opioid Receptor Antagonist,Opioid Reversal Agent,Competitive Opioid Antagonists,Opioid Receptor Antagonists,Opioid Reversal Agents,Agent, Opioid Reversal,Agents, Opioid Reversal,Antagonist, Competitive Opioid,Antagonist, Narcotic,Antagonist, Opioid,Antagonist, Opioid Receptor,Antagonists, Competitive Opioid,Antagonists, Narcotic,Antagonists, Opioid,Antagonists, Opioid Receptor,Opioid Antagonist, Competitive,Opioid Antagonists, Competitive,Receptor Antagonist, Opioid,Receptor Antagonists, Opioid,Reversal Agent, Opioid,Reversal Agents, Opioid
D010147 Pain Measurement Scales, questionnaires, tests, and other methods used to assess pain severity and duration in patients or experimental animals to aid in diagnosis, therapy, and physiological studies. Analgesia Tests,Analogue Pain Scale,Formalin Test,McGill Pain Questionnaire,Nociception Tests,Pain Assessment,Pain Intensity,Pain Severity,Tourniquet Pain Test,Visual Analogue Pain Scale,Analog Pain Scale,Assessment, Pain,McGill Pain Scale,Visual Analog Pain Scale,Analgesia Test,Analog Pain Scales,Analogue Pain Scales,Formalin Tests,Intensity, Pain,Measurement, Pain,Nociception Test,Pain Assessments,Pain Intensities,Pain Measurements,Pain Questionnaire, McGill,Pain Scale, Analog,Pain Scale, Analogue,Pain Scale, McGill,Pain Severities,Pain Test, Tourniquet,Questionnaire, McGill Pain,Scale, Analog Pain,Scale, Analogue Pain,Scale, McGill Pain,Severity, Pain,Test, Analgesia,Test, Formalin,Test, Nociception,Test, Tourniquet Pain,Tests, Nociception,Tourniquet Pain Tests
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004353 Drug Evaluation, Preclinical Preclinical testing of drugs in experimental animals or in vitro for their biological and toxic effects and potential clinical applications. Drug Screening,Evaluation Studies, Drug, Pre-Clinical,Drug Evaluation Studies, Preclinical,Drug Evaluations, Preclinical,Evaluation Studies, Drug, Preclinical,Evaluation, Preclinical Drug,Evaluations, Preclinical Drug,Medicinal Plants Testing, Preclinical,Preclinical Drug Evaluation,Preclinical Drug Evaluations,Drug Screenings,Screening, Drug,Screenings, Drug
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D000078785 Mirtazapine A piperazinoazepine tetracyclic compound that enhances the release of NOREPINEPHRINE and SEROTONIN through blockage of presynaptic ALPHA-2 ADRENERGIC RECEPTORS. It also blocks both 5-HT2 and 5-HT3 serotonin receptors and is a potent HISTAMINE H1 RECEPTOR antagonist. It is used for the treatment of depression, and may also be useful for the treatment of anxiety disorders. (N-Methyl-11C)mirtazapine,(S)-Mirtazapine,6-Azamianserin,Esmirtazapine,Norset,ORG 3770,ORG-3770,Org 50081,Remergil,Remeron,Rexer,Zispin,6 Azamianserin,ORG3770

Related Publications

Shaul Schreiber, and Tova Rigai, and Yeshayahu Katz, and Chaim G Pick
September 2000, Behavioural brain research,
Shaul Schreiber, and Tova Rigai, and Yeshayahu Katz, and Chaim G Pick
October 1999, Neuroscience letters,
Shaul Schreiber, and Tova Rigai, and Yeshayahu Katz, and Chaim G Pick
September 1998, Neuroscience letters,
Shaul Schreiber, and Tova Rigai, and Yeshayahu Katz, and Chaim G Pick
September 2001, Life sciences,
Shaul Schreiber, and Tova Rigai, and Yeshayahu Katz, and Chaim G Pick
August 2002, Neuroscience letters,
Shaul Schreiber, and Tova Rigai, and Yeshayahu Katz, and Chaim G Pick
January 2002, Journal of molecular neuroscience : MN,
Shaul Schreiber, and Tova Rigai, and Yeshayahu Katz, and Chaim G Pick
November 2000, Pain,
Shaul Schreiber, and Tova Rigai, and Yeshayahu Katz, and Chaim G Pick
December 1995, International clinical psychopharmacology,
Shaul Schreiber, and Tova Rigai, and Yeshayahu Katz, and Chaim G Pick
January 1997, Pharmacotherapy,
Shaul Schreiber, and Tova Rigai, and Yeshayahu Katz, and Chaim G Pick
December 1996, European journal of pharmacology,
Copied contents to your clipboard!