Changes in cat primary auditory cortex after minor-to-moderate pure-tone induced hearing loss. 2002

Satoshi Seki, and Jos J Eggermont
Department of Physiology and Biophysics, University of Calgary, 2500 University Drive N.W., AB, Canada T2N 1N4.

In this paper we present findings in the primary auditory cortex of cats exposed for 2 h to a 115 dB SPL, 6 kHz tone at 36 days, 56 days or 118 days after birth. We evaluate the effects of age at exposure, amount of hearing loss, and time after induction of trauma on the functional reorganization of the cortical tonotopic map. We found a fairly sharp demarcation in the amount of hearing loss (20-25 dB) that caused cortical reorganization. For localized hearing losses, unmasking of excitatory contributions of neighboring frequency regions was found. For cats showing reorganization of the tonotopic map, the frequency-tuning curve bandwidth at 20 dB above threshold at CF (BW(20dB)) increased with increasing threshold at CF. Threshold at CF, and BW(20dB) increased with time after exposure. Minimum spike latency was initially increased, but subsequently decreased with time after exposure at a rate that was two times faster in cats with reorganized cortex than in cats with normal tonotopic maps, to reach the same asymptotic value. Thresholds at CF were correlated with the peripheral hearing loss at near CF frequencies as estimated from ABR measurements. The correlation between BW(20dB) and CF threshold suggests that part of the reorganization could be due to 'residual' sensitivity of the high frequency neurons to not-affected lower or higher frequencies. However, for CFs above 6 kHz, the BW(20dB) for cats with reorganization of the tonotopic map was significantly lower (on average 0.3 octave, P<0.05) than for cats with normal tonotopic maps. This is not what one would expect in cases of pseudo-plasticity characterized by concurrent shifts in BW(20dB) and CF as a result of residual sensitivity to lower frequencies.

UI MeSH Term Description Entries
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D006309 Hearing The ability or act of sensing and transducing ACOUSTIC STIMULATION to the CENTRAL NERVOUS SYSTEM. It is also called audition. Audition
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001301 Audiometry, Pure-Tone Measurement of hearing based on the use of pure tones of various frequencies and intensities as auditory stimuli. Audiometry, Bekesy,Audiometry, Pure Tone,Bekesy Audiometry,Pure-Tone Audiometry
D001303 Auditory Cortex The region of the cerebral cortex that receives the auditory radiation from the MEDIAL GENICULATE BODY. Brodmann Area 41,Brodmann Area 42,Brodmann's Area 41,Heschl Gyrus,Heschl's Gyrus,Auditory Area,Heschl's Convolutions,Heschl's Gyri,Primary Auditory Cortex,Temporal Auditory Area,Transverse Temporal Gyri,Area 41, Brodmann,Area 41, Brodmann's,Area 42, Brodmann,Area, Auditory,Area, Temporal Auditory,Auditory Areas,Auditory Cortex, Primary,Brodmanns Area 41,Cortex, Auditory,Cortex, Primary Auditory,Gyrus, Heschl,Gyrus, Heschl's,Gyrus, Transverse Temporal,Heschl Convolutions,Heschl Gyri,Heschls Convolutions,Heschls Gyri,Heschls Gyrus,Primary Auditory Cortices,Temporal Auditory Areas,Temporal Gyrus, Transverse,Transverse Temporal Gyrus
D001309 Auditory Threshold The audibility limit of discriminating sound intensity and pitch. Auditory Thresholds,Threshold, Auditory,Thresholds, Auditory

Related Publications

Satoshi Seki, and Jos J Eggermont
October 2003, Journal of neurophysiology,
Satoshi Seki, and Jos J Eggermont
January 1992, Experimental brain research,
Satoshi Seki, and Jos J Eggermont
January 1977, Journal of the American Audiology Society,
Copied contents to your clipboard!