Contribution of angiotensin II internalization to intrarenal angiotensin II levels in rats. 2002

Catherine Ingert, and Michèle Grima, and Catherine Coquard, and Mariette Barthelmebs, and Jean-Louis Imbs
Institut de Pharmacologie, Faculté de Médecine, Université Louis Pasteur, 67085 Strasbourg France.

This study was designed to determine the involvement of AT(1) receptors in the uptake of ANG II in the kidney of rats exposed to differing salt intake. Male Wistar-Kyoto rats were treated with a normal-salt (NS; 1% NaCl, n = 7) or a low-salt (LS; 0.025% NaCl, n = 7) diet combined with (LS+Los, n = 7; NS+Los, n = 7) or without losartan (30 mg. kg(-1). day(-1)), an AT(1) receptor antagonist. Renin (RA) and angiotensin-converting enzyme (ACE) activities and angiotensinogen, ANG I, and ANG II levels were measured in plasma, renal cortex, and medulla. In LS rats, in both plasma and renal cortex, the increase in RA was associated with an increase in ANG I and ANG II levels compared with NS rats, but intrarenal ANG II levels increased more than ANG I levels. In NS+Los rats, the increase in RA in plasma was followed by a marked increase in plasma ANG I and ANG II levels compared with NS rats whereas in the kidney the increase of renal RA was followed by a decrease of the levels of these peptides. The same pattern was observed in LS+Los rats, but the decrease in renal ANG II levels was much more pronounced in LS+Los rats than in NS+Los rats. Our results suggest that the increase in renal ANG II levels after salt restriction results mainly from an uptake of ANG II, via AT(1) receptors. Such elevated intrarenal ANG II levels could contribute to maintain sodium and fluid balance and arterial blood pressure during salt-deficiency states.

UI MeSH Term Description Entries
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D007703 Peptidyl-Dipeptidase A A peptidyl-dipeptidase that catalyzes the release of a C-terminal dipeptide, oligopeptide-|-Xaa-Yaa, when Xaa is not Pro, and Yaa is neither Asp nor Glu. Thus, conversion of ANGIOTENSIN I to ANGIOTENSIN II, with increase in vasoconstrictor activity, but no action on angiotensin II. It is also able to inactivate BRADYKININ, a potent vasodilator; and has a glycosidase activity which releases GPI-anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety. (From https://www.uniprot.org April 15, 2020). ACE1 Angiotensin-Converting Enzyme 1,ACE1 Protein,Angiotensin Converting Enzyme,Angiotensin Converting Enzyme 1,Antigens, CD143,CD143 Antigens,Dipeptidyl Carboxypeptidase I,Kininase II,Peptidase P,Angiotensin I-Converting Enzyme,Carboxycathepsin,Dipeptidyl Peptidase A,Kininase A,ACE1 Angiotensin Converting Enzyme 1,Angiotensin I Converting Enzyme,Carboxypeptidase I, Dipeptidyl,Peptidyl Dipeptidase A
D008297 Male Males
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D012084 Renin-Angiotensin System A BLOOD PRESSURE regulating system of interacting components that include RENIN; ANGIOTENSINOGEN; ANGIOTENSIN CONVERTING ENZYME; ANGIOTENSIN I; ANGIOTENSIN II; and angiotensinase. Renin, an enzyme produced in the kidney, acts on angiotensinogen, an alpha-2 globulin produced by the liver, forming ANGIOTENSIN I. Angiotensin-converting enzyme, contained in the lung, acts on angiotensin I in the plasma converting it to ANGIOTENSIN II, an extremely powerful vasoconstrictor. Angiotensin II causes contraction of the arteriolar and renal VASCULAR SMOOTH MUSCLE, leading to retention of salt and water in the KIDNEY and increased arterial blood pressure. In addition, angiotensin II stimulates the release of ALDOSTERONE from the ADRENAL CORTEX, which in turn also increases salt and water retention in the kidney. Angiotensin-converting enzyme also breaks down BRADYKININ, a powerful vasodilator and component of the KALLIKREIN-KININ SYSTEM. Renin-Angiotensin-Aldosterone System,Renin Angiotensin Aldosterone System,Renin Angiotensin System,System, Renin-Angiotensin,System, Renin-Angiotensin-Aldosterone
D004039 Diet, Sodium-Restricted A diet which contains very little sodium chloride. It is prescribed by some for hypertension and for edematous states. (Dorland, 27th ed) Diet, Low-Salt,Diet, Low-Sodium,Diet, Salt-Free,Diet, Low Salt,Diet, Low Sodium,Diet, Salt Free,Diet, Sodium Restricted,Diets, Low-Salt,Diets, Low-Sodium,Diets, Salt-Free,Diets, Sodium-Restricted,Low-Salt Diet,Low-Salt Diets,Low-Sodium Diet,Low-Sodium Diets,Salt-Free Diet,Salt-Free Diets,Sodium-Restricted Diet,Sodium-Restricted Diets
D000803 Angiotensin I A decapeptide that is cleaved from precursor angiotensinogen by RENIN. Angiotensin I has limited biological activity. It is converted to angiotensin II, a potent vasoconstrictor, after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME.

Related Publications

Catherine Ingert, and Michèle Grima, and Catherine Coquard, and Mariette Barthelmebs, and Jean-Louis Imbs
May 2009, American journal of physiology. Renal physiology,
Catherine Ingert, and Michèle Grima, and Catherine Coquard, and Mariette Barthelmebs, and Jean-Louis Imbs
January 1994, The American journal of physiology,
Catherine Ingert, and Michèle Grima, and Catherine Coquard, and Mariette Barthelmebs, and Jean-Louis Imbs
October 1996, Hypertension (Dallas, Tex. : 1979),
Catherine Ingert, and Michèle Grima, and Catherine Coquard, and Mariette Barthelmebs, and Jean-Louis Imbs
April 2011, Current opinion in pharmacology,
Catherine Ingert, and Michèle Grima, and Catherine Coquard, and Mariette Barthelmebs, and Jean-Louis Imbs
March 2001, Journal of the renin-angiotensin-aldosterone system : JRAAS,
Catherine Ingert, and Michèle Grima, and Catherine Coquard, and Mariette Barthelmebs, and Jean-Louis Imbs
January 1995, Blood pressure. Supplement,
Catherine Ingert, and Michèle Grima, and Catherine Coquard, and Mariette Barthelmebs, and Jean-Louis Imbs
July 2000, Hypertension research : official journal of the Japanese Society of Hypertension,
Catherine Ingert, and Michèle Grima, and Catherine Coquard, and Mariette Barthelmebs, and Jean-Louis Imbs
January 2001, Contributions to nephrology,
Catherine Ingert, and Michèle Grima, and Catherine Coquard, and Mariette Barthelmebs, and Jean-Louis Imbs
January 1971, Minerva nefrologica,
Catherine Ingert, and Michèle Grima, and Catherine Coquard, and Mariette Barthelmebs, and Jean-Louis Imbs
September 1997, Seminars in nephrology,
Copied contents to your clipboard!