EGF and dextran-conjugated EGF induces differential phosphorylation of the EGF receptor. 2002

Maria Hägg, and Asa Liljegren, and Jörgen Carlsson, and Lars Rönnstrand, and Johan Lennartsson
Ludwig Institute for Cancer Research, Biomedical Center, SE-751 24 Uppsala, Sweden.

Dextran-conjugated EGF (EGF-dextran) has a potential use for targeted radionuclide therapy of tumors that overexpress the epidermal growth factor receptor (EGFR). There are plans to treat both bladder carcinomas and malignant gliomas with local injections of radiolabeled EGF-dextran since these tumors often express high levels of EGFR. In this report we show that EGF and EGF-dextran differentially activate the EGFR. In the human glioma cell line U-343, activation of the serine/threonine kinases Erk and Akt is identical upon stimulation with EGF or EGF-dextran. However, the effect on phospholipase Cgamma1 (PLCgamma1) phosphorylation differs. In cells stimulated with EGF-dextran, the PLCgamma1 phosphorylation is lower than in cells stimulated with EGF. This observation could be explained by the fact that the PLCgamma1 association sites in the EGFR, tyrosine residues 992 and 1173, were phosphorylated to a lower degree when the receptor was stimulated with EGF-dextran as compared to with EGF.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine
D051966 Phospholipase C gamma A phosphoinositide phospholipase C subtype that is primarily regulated by PROTEIN-TYROSINE KINASES. It is structurally related to PHOSPHOLIPASE C DELTA with the addition of SRC HOMOLOGY DOMAINS and pleckstrin homology domains located between two halves of the CATALYTIC DOMAIN. PLC gamma1,PLC-gamma,PLC-gamma 2,PLC-gamma D,PLCgamma2,Phospholipase C gamma 1,Phospholipase C gamma 2,Phospholipase C gamma D,Phospholipase C gamma1,Phospholipase C gamma2,Phospholipase C gammaD,PLC gamma 2

Related Publications

Maria Hägg, and Asa Liljegren, and Jörgen Carlsson, and Lars Rönnstrand, and Johan Lennartsson
November 2006, Oncogene,
Maria Hägg, and Asa Liljegren, and Jörgen Carlsson, and Lars Rönnstrand, and Johan Lennartsson
November 1985, Somatic cell and molecular genetics,
Maria Hägg, and Asa Liljegren, and Jörgen Carlsson, and Lars Rönnstrand, and Johan Lennartsson
June 1989, Cell,
Maria Hägg, and Asa Liljegren, and Jörgen Carlsson, and Lars Rönnstrand, and Johan Lennartsson
February 1997, International journal of oncology,
Maria Hägg, and Asa Liljegren, and Jörgen Carlsson, and Lars Rönnstrand, and Johan Lennartsson
December 2013, The American journal of pathology,
Maria Hägg, and Asa Liljegren, and Jörgen Carlsson, and Lars Rönnstrand, and Johan Lennartsson
March 1982, Biochemical and biophysical research communications,
Maria Hägg, and Asa Liljegren, and Jörgen Carlsson, and Lars Rönnstrand, and Johan Lennartsson
September 2019, Scientific reports,
Maria Hägg, and Asa Liljegren, and Jörgen Carlsson, and Lars Rönnstrand, and Johan Lennartsson
May 1996, Journal of biochemical and biophysical methods,
Maria Hägg, and Asa Liljegren, and Jörgen Carlsson, and Lars Rönnstrand, and Johan Lennartsson
January 2015, FEBS letters,
Maria Hägg, and Asa Liljegren, and Jörgen Carlsson, and Lars Rönnstrand, and Johan Lennartsson
August 1982, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!