2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces Fas-dependent activation-induced cell death in superantigen-primed T cells. 2002

Iris A Camacho, and Mitzi Nagarkatti, and Prakash S Nagarkatti
Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA.

Immune response against a foreign antigen is characterized by a growth phase, in which antigen-specific T cells clonally expand, followed by a decline phase in which the activated T cells undergo apoptosis, a process termed activation-induced cell death (AICD). In the current study, we have investigated the phase at which 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) acts to downregulate the antigen-specific T cell response. To this end, C57BL/6 +/+ mice were injected with staphylococcal enterotoxin A (SEA) into the footpads (10 micro g/footpad), and simultaneously treated with TCDD (10 or 50 micro g/kg intraperitoneally). At various time points, the draining lymph node (LN) cells were analyzed for SEA-activated T cells. The data demonstrated that in C57BL/6 +/+ mice, TCDD treatment did not alter the growth phase but facilitated the decline phase of SEA-reactive T cells. TCDD caused a significant decrease in the percentage and absolute numbers of CD4(+) and CD8(+) SEA-responsive T cells expressing Vbeta3(+) and Vbeta11(+) but did not affect SEA-nonresponsive Vbeta8(+) T cells. Upon in vitro culture, TCDD-exposed SEA-immunized LN cells exhibited increased levels of apoptosis when compared with the vehicle controls. When Fas-deficient (C57BL/6 lpr/lpr) or Fas ligand defective (C57BL/6 gld/gld) mice were treated with TCDD, they failed to exhibit a decrease in percentage and cellularity of SEA-reactive T cells, thereby suggesting a role of Fas-Fas ligand interactions in the TCDD-induced downregulation of SEA-reactive T cell response. The resistance to TCDD-induced decrease in T cell responsiveness to SEA seen in Fas- and FasL-mutant mice was neither due to decreased aryl hydrocabon receptor (AhR) expression nor to altered T cell responsiveness to SEA. The current study demonstrates that TCDD does not prevent T cell activation, but prematurely induces Fas-based AICD, which may contribute to the deletion of antigen-primed T cells.

UI MeSH Term Description Entries
D007369 Interferon Inducers Agents that promote the production and release of interferons. They include mitogens, lipopolysaccharides, and the synthetic polymers Poly A-U and Poly I-C. Viruses, bacteria, and protozoa have been also known to induce interferons. Inducers, Interferon
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D004768 Enterotoxins Substances that are toxic to the intestinal tract causing vomiting, diarrhea, etc.; most common enterotoxins are produced by bacteria. Staphylococcal Enterotoxin,Enterotoxin,Staphylococcal Enterotoxins,Enterotoxin, Staphylococcal,Enterotoxins, Staphylococcal
D004785 Environmental Pollutants Substances or energies, for example heat or light, which when introduced into the air, water, or land threaten life or health of individuals or ECOSYSTEMS. Environmental Pollutant,Pollutant,Pollutants,Pollutants, Environmental,Pollutant, Environmental
D005260 Female Females
D000072317 Polychlorinated Dibenzodioxins Dibenzodioxin derivatives that contain multiple chloride atoms bound to the benzene ring structures. TCDD,Tetrachlorodibenzodioxin,2,3,7,8-Tetrachlorodibenzo-p-dioxin,Chlorinated Dibenzo-p-dioxins,Dibenzo(b,e)(1,4)dioxin, 2,3,7,8-tetrachloro-,PCDD,Polychlorinated Dibenzo-p-dioxins,Polychlorinated Dibenzodioxin,Polychlorodibenzo-4-dioxin,Polychlorodibenzo-p-dioxin,Tetrachlorodibenzo-p-dioxin,Chlorinated Dibenzo p dioxins,Dibenzo-p-dioxins, Chlorinated,Dibenzo-p-dioxins, Polychlorinated,Dibenzodioxin, Polychlorinated,Dibenzodioxins, Polychlorinated,Polychlorinated Dibenzo p dioxins,Polychlorodibenzo 4 dioxin,Polychlorodibenzo p dioxin,Tetrachlorodibenzo p dioxin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013211 Staphylococcus aureus Potentially pathogenic bacteria found in nasal membranes, skin, hair follicles, and perineum of warm-blooded animals. They may cause a wide range of infections and intoxications.
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte

Related Publications

Iris A Camacho, and Mitzi Nagarkatti, and Prakash S Nagarkatti
February 2005, Toxicology,
Iris A Camacho, and Mitzi Nagarkatti, and Prakash S Nagarkatti
January 2004, Report on carcinogens : carcinogen profiles,
Iris A Camacho, and Mitzi Nagarkatti, and Prakash S Nagarkatti
January 2002, Report on carcinogens : carcinogen profiles,
Iris A Camacho, and Mitzi Nagarkatti, and Prakash S Nagarkatti
May 1993, International journal of immunopharmacology,
Iris A Camacho, and Mitzi Nagarkatti, and Prakash S Nagarkatti
January 1985, International journal of immunopharmacology,
Iris A Camacho, and Mitzi Nagarkatti, and Prakash S Nagarkatti
June 2024, Neurotoxicology,
Iris A Camacho, and Mitzi Nagarkatti, and Prakash S Nagarkatti
June 1996, Toxicology,
Iris A Camacho, and Mitzi Nagarkatti, and Prakash S Nagarkatti
January 1990, Chemico-biological interactions,
Iris A Camacho, and Mitzi Nagarkatti, and Prakash S Nagarkatti
January 1990, Free radical biology & medicine,
Iris A Camacho, and Mitzi Nagarkatti, and Prakash S Nagarkatti
May 1992, International journal of immunopharmacology,
Copied contents to your clipboard!