Temperature-sensitive resolution of cis- and trans-fatty acid isomers of partially hydrogenated vegetable oils on SP-2560 and CP-Sil 88 capillary columns. 2002

W M Nimal Ratnayake, and Louise J Plouffe, and Elodie Pasquier, and Claude Gagnon
Health Canada, Health Products and Food Branch, Nutrition Research Division, Ottawa, Ontario. nimal_ratnayake@hc-sc.gc.ca

This study examines the effect of the column operating temperature of 100 m SP-2560 and CP-Sil 88 capillary gas chromatographic (GC) columns on the separation of cis- and trans-octadecenoic (18:1) isomers in partially hydrogenated vegetable oils. The overlapping GC peaks were measured at column isothermal temperatures of 170, 175, 180, 185, and 190 degrees C. With both columns, isothermal operation at 180 degrees C produced the fewest overlapping peaks of the cis and trans isomers. At this temperature, all trans-18:1 isomers, except 13t-18:1 (t = trans), 14t-18:1, and 15t-18:1 isomers were resolved from the cis-18:1 isomers. The peaks of the 13t-18:1 and 14t-18:1 isomer pair, which always elute together, overlapped peaks of the 6c-18:1 (c = cis), 7c-18:1, and 8c-18:1 isomers; the peak of the 15t-18:1 isomer overlapped the major cis-18:1 peak, which was mainly due to 9c-18:1. Isothermal operations above or below 180 degrees C produced some additional overlapping problems. At 185 and 190 degrees C, the peaks of the 16t-18:1 and 13c-18:1 isomers overlapped. At 175 and 170 degrees C, the 16t-18:1 peak overlapped the 14c-18:1 peak, and the peaks of the 13t + 14t-18:1 isomer pair partially overlapped the major cis-18:1 peak. The separation of 11c-20:1 and alpha-linolenic acid and its geometric isomers was also affected by the column operating temperature. Isothermal operation of the SP-2560 column at 180 degrees C produced a baseline separation of 11c-20:1 and alpha-linolenic acid and its geometric isomers, whereas with the CP-Sil 88 column the best resolution was obtained at 170 degrees C. The results of this study show that the SP-2560 capillary column has a slight advantage over the CP-Sil 88 column for the simultaneous resolution of all the fatty acids generally found in partially hydrogenated vegetable oils.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D008383 Margarine A butterlike product made of refined vegetable oils, sometimes blended with animal fats, and emulsified usually with water or milk. It is used as a butter substitute. (From Random House Unabridged Dictionary, 2d ed)
D010938 Plant Oils Oils derived from plants or plant products. Oils, Plant,Oils, Vegetable,Plant Oil,Vegetable Oil,Vegetable Oils,Oil, Plant,Oil, Vegetable
D002849 Chromatography, Gas Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix. Chromatography, Gas-Liquid,Gas Chromatography,Chromatographies, Gas,Chromatographies, Gas-Liquid,Chromatography, Gas Liquid,Gas Chromatographies,Gas-Liquid Chromatographies,Gas-Liquid Chromatography
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D019075 Electrophoresis, Capillary A highly-sensitive (in the picomolar range, which is 10,000-fold more sensitive than conventional electrophoresis) and efficient technique that allows separation of PROTEINS; NUCLEIC ACIDS; and CARBOHYDRATES. (Segen, Dictionary of Modern Medicine, 1992) Capillary Zone Electrophoresis,Capillary Electrophoreses,Capillary Electrophoresis,Capillary Zone Electrophoreses,Electrophoreses, Capillary,Electrophoreses, Capillary Zone,Electrophoresis, Capillary Zone,Zone Electrophoreses, Capillary,Zone Electrophoresis, Capillary

Related Publications

W M Nimal Ratnayake, and Louise J Plouffe, and Elodie Pasquier, and Claude Gagnon
June 1995, Canadian journal of physiology and pharmacology,
W M Nimal Ratnayake, and Louise J Plouffe, and Elodie Pasquier, and Claude Gagnon
January 2013, Journal of oleo science,
W M Nimal Ratnayake, and Louise J Plouffe, and Elodie Pasquier, and Claude Gagnon
January 1984, Annual review of nutrition,
W M Nimal Ratnayake, and Louise J Plouffe, and Elodie Pasquier, and Claude Gagnon
January 1961, The Proceedings of the Nutrition Society,
W M Nimal Ratnayake, and Louise J Plouffe, and Elodie Pasquier, and Claude Gagnon
August 1971, Journal of the American Oil Chemists' Society,
W M Nimal Ratnayake, and Louise J Plouffe, and Elodie Pasquier, and Claude Gagnon
January 2015, Journal of oleo science,
W M Nimal Ratnayake, and Louise J Plouffe, and Elodie Pasquier, and Claude Gagnon
August 2012, The British journal of nutrition,
W M Nimal Ratnayake, and Louise J Plouffe, and Elodie Pasquier, and Claude Gagnon
March 2013, International journal of cancer,
W M Nimal Ratnayake, and Louise J Plouffe, and Elodie Pasquier, and Claude Gagnon
June 2002, Lipids,
Copied contents to your clipboard!