Involvement of survival motor neuron (SMN) protein in cell death. 2002

Sheela Vyas, and Catherine Béchade, and Béatrice Riveau, and Julian Downward, and Antoine Triller
INSERM U497, 46 rue d'Ulm, Paris 75005, France. vyas@wotan.ens.fr

Infantile spinal muscular atrophy (SMA) is caused by mutations in the survival motor neuron (SMN)1 gene. We investigated the role of human (h) SMN protein on cell death in PC12 and Rat-1 cells. hSMN prolonged cell survival in PC12 cells deprived of trophic support and in Rat-1 cells induced to die by activation of the proto-oncogene c-Myc, to similar magnitude as Bcl-2 or IAP-2. While hSMN was ineffective in inhibiting apoptosis induced by ultraviolet light (UV) or etoposide treatment in proliferating PC12 or Rat-1 cells, a protective effect was observed in terminally NGF/dBcAMP-differentiated PC12 cells. hSMN inhibited the onset of apoptosis in NGF/dBcAMP-deprived or UV-treated co-differentiated PC12 cells by preventing cytochrome c release and caspase-3 activation, indicating that its effects are through suppression of the mitochondrial apoptotic pathway. Expressing hSMN deleted for exon 7 (Delta7) or for exons 6 and 7 (Delta6/7), or with the SMA point mutant Y272C, resulted in loss of survival function. Moreover, these mutants also exhibited pro-apoptotic effects in Rat-1 cells. The localization pattern of full-length hSMN in PC12 and Rat-1 cells was similar to that of endogenous SMN: granular labelling in the cytoplasm and discrete fluorescence spots in the nucleus, some of which co-localized with p80 coilin, the characteristic marker of Cajal bodies. However, cytoplasmic and nuclear aggregates were often seen with hSMNDelta7, whereas the hSMNDelta6/7 mutant showed homogenous nuclear labelling that excluded the nucleolus. Thus, our results show that the C-terminal region is critical in suppression of apoptosis by SMN.

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D005047 Etoposide A semisynthetic derivative of PODOPHYLLOTOXIN that exhibits antitumor activity. Etoposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent entry into the mitotic phase of cell division, and lead to cell death. Etoposide acts primarily in the G2 and S phases of the cell cycle. Demethyl Epipodophyllotoxin Ethylidine Glucoside,Celltop,Eposide,Eposin,Eto-GRY,Etomedac,Etopos,Etoposide Pierre Fabre,Etoposide Teva,Etoposide, (5S)-Isomer,Etoposide, (5a alpha)-Isomer,Etoposide, (5a alpha,9 alpha)-Isomer,Etoposide, alpha-D-Glucopyranosyl Isomer,Etoposido Ferrer Farma,Exitop,Lastet,NSC-141540,Onkoposid,Riboposid,Toposar,VP 16-213,VP-16,Vepesid,Vépéside-Sandoz,Eto GRY,Etoposide, alpha D Glucopyranosyl Isomer,NSC 141540,NSC141540,Teva, Etoposide,VP 16,VP 16 213,VP 16213,VP16,Vépéside Sandoz,alpha-D-Glucopyranosyl Isomer Etoposide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Sheela Vyas, and Catherine Béchade, and Béatrice Riveau, and Julian Downward, and Antoine Triller
November 2018, Cellular and molecular life sciences : CMLS,
Sheela Vyas, and Catherine Béchade, and Béatrice Riveau, and Julian Downward, and Antoine Triller
January 1999, The European journal of neuroscience,
Sheela Vyas, and Catherine Béchade, and Béatrice Riveau, and Julian Downward, and Antoine Triller
April 2004, The Journal of biological chemistry,
Sheela Vyas, and Catherine Béchade, and Béatrice Riveau, and Julian Downward, and Antoine Triller
November 2001, Human molecular genetics,
Sheela Vyas, and Catherine Béchade, and Béatrice Riveau, and Julian Downward, and Antoine Triller
January 2019, Frontiers in physiology,
Sheela Vyas, and Catherine Béchade, and Béatrice Riveau, and Julian Downward, and Antoine Triller
July 2000, Journal of medical genetics,
Sheela Vyas, and Catherine Béchade, and Béatrice Riveau, and Julian Downward, and Antoine Triller
October 2016, Scientific reports,
Sheela Vyas, and Catherine Béchade, and Béatrice Riveau, and Julian Downward, and Antoine Triller
February 2007, Proceedings of the National Academy of Sciences of the United States of America,
Sheela Vyas, and Catherine Béchade, and Béatrice Riveau, and Julian Downward, and Antoine Triller
July 1999, European journal of human genetics : EJHG,
Sheela Vyas, and Catherine Béchade, and Béatrice Riveau, and Julian Downward, and Antoine Triller
August 2021, Biochemical and biophysical research communications,
Copied contents to your clipboard!