Modulation of T cell cytokine production by interferon regulatory factor-4. 2002

Chuan-Min Hu, and So Young Jang, and Jessica C Fanzo, and Alessandra B Pernis
Department of Medicine, Columbia University, 630 West 168th Street, New York, NY 10032, USA.

Production of cytokines is one of the major mechanisms employed by CD4(+) T cells to coordinate immune responses. Although the molecular mechanisms controlling T cell cytokine production have been extensively studied, the factors that endow T cells with their ability to produce unique sets of cytokines have not been fully characterized. Interferon regulatory factor (IRF)-4 is a lymphoid-restricted member of the interferon regulatory factor family of transcriptional regulators, whose deficiency leads to a profound impairment in the ability of mature CD4(+) T cells to produce cytokines. In these studies, we have investigated the mechanisms employed by IRF-4 to control cytokine synthesis. We demonstrate that stable expression of IRF-4 in Jurkat T cells not only leads to a strong enhancement in the synthesis of interleukin (IL)-2, but also enables these cells to start producing considerable amounts of IL-4, IL-10, and IL-13. Transient transfection assays indicate that IRF-4 can transactivate luciferase reporter constructs driven by either the human IL-2 or the human IL-4 promoter. A detailed analysis of the effects of IRF-4 on the IL-4 promoter reveals that IRF-4 binds to a site adjacent to a functionally important NFAT binding element and that IRF-4 cooperates with NFATc1. These studies thus support the notion that IRF-4 represents one of the lymphoid-specific components that control the ability of T lymphocytes to produce a distinctive array of cytokines.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008156 Luciferases Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates. Luciferase
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

Chuan-Min Hu, and So Young Jang, and Jessica C Fanzo, and Alessandra B Pernis
December 1999, The Journal of experimental medicine,
Chuan-Min Hu, and So Young Jang, and Jessica C Fanzo, and Alessandra B Pernis
November 2013, Immunity,
Chuan-Min Hu, and So Young Jang, and Jessica C Fanzo, and Alessandra B Pernis
October 1997, Cytokine,
Chuan-Min Hu, and So Young Jang, and Jessica C Fanzo, and Alessandra B Pernis
September 2002, Proceedings of the National Academy of Sciences of the United States of America,
Chuan-Min Hu, and So Young Jang, and Jessica C Fanzo, and Alessandra B Pernis
April 2000, The Journal of experimental medicine,
Chuan-Min Hu, and So Young Jang, and Jessica C Fanzo, and Alessandra B Pernis
May 2018, The Journal of biological chemistry,
Chuan-Min Hu, and So Young Jang, and Jessica C Fanzo, and Alessandra B Pernis
January 2023, Research (Washington, D.C.),
Chuan-Min Hu, and So Young Jang, and Jessica C Fanzo, and Alessandra B Pernis
January 2020, Frontiers in immunology,
Chuan-Min Hu, and So Young Jang, and Jessica C Fanzo, and Alessandra B Pernis
August 2020, Retrovirology,
Chuan-Min Hu, and So Young Jang, and Jessica C Fanzo, and Alessandra B Pernis
January 2022, Frontiers in molecular biosciences,
Copied contents to your clipboard!