Effect of synthetic oligopeptides on osteoporosis. 2002

Weina Cui, and Chao Wang, and Ming Zhao, and Shiqi Peng
College of Pharmaceutical Sciences, Peking University, Beijing, PR China.

The objective of this study was to establish the solution method of GHRPS, the synthetic oligopeptides Tyr-Gly-Gly-Phe-Met-NH2, Tyr-Gly-Gly-Phe-Met-OH, Tyr-Gly-Gly-Phe-Leu-NH2, Tyr-Gly-Gly-Phe-Leu-OH, Tyr-Gly-Gly-Phe-Gly-NH2, and Tyr-Gly-Gly-Phe-Gly-OH, to verify their effect on osteoporosis. Male ICR mice (20+/-2 g) were used. The intramuscular injection dose of 6.3 mg/kg prednisone induced a significant decrease of body and femur weight of the animals. The subcutaneous injection dose of 18 microg/kg synthetic peptide was not effective to prevent the decrease of body and femur weight of the animals. The subcutaneous injection dose of 6.3 mg/kg prednisone elicited a decrease in content of femur calcium and in the level of serum calcium of the animals. The subcutaneous injection dose of 18 microg/kg Tyr-Gly-Gly-Phe-Leu-NH2, or Tyr-Gly-Gly-Phe-Leu-OH, or Tyr-Gly-Gly-Phe-Gly-NH2 significantly increased the content of femur calcium and decreased the level of serum calcium of the animals. It was also observed that the subcutaneous injection dose of 18 microg/kg Tyr-Gly-Gly-Phe-Gly-OH, Tyr-Gly-Gly-Phe-Leu-OH, Tyr-Gly-Gly-Phe-Met-OH, Tyr-Gly-Gly-Phe-Met-NH2 significantly increased the content of femur phosphorous and decreased the activity of ALP of the animals.

UI MeSH Term Description Entries
D008297 Male Males
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D010024 Osteoporosis Reduction of bone mass without alteration in the composition of bone, leading to fractures. Primary osteoporosis can be of two major types: postmenopausal osteoporosis (OSTEOPOROSIS, POSTMENOPAUSAL) and age-related or senile osteoporosis. Age-Related Osteoporosis,Bone Loss, Age-Related,Osteoporosis, Age-Related,Osteoporosis, Post-Traumatic,Osteoporosis, Senile,Senile Osteoporosis,Osteoporosis, Involutional,Age Related Osteoporosis,Age-Related Bone Loss,Age-Related Bone Losses,Age-Related Osteoporoses,Bone Loss, Age Related,Bone Losses, Age-Related,Osteoporoses,Osteoporoses, Age-Related,Osteoporoses, Senile,Osteoporosis, Age Related,Osteoporosis, Post Traumatic,Post-Traumatic Osteoporoses,Post-Traumatic Osteoporosis,Senile Osteoporoses
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013007 Growth Hormone-Releasing Hormone A peptide of 44 amino acids in most species that stimulates the release and synthesis of GROWTH HORMONE. GHRF (or GRF) is synthesized by neurons in the ARCUATE NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, GHRF stimulates GH release by the SOMATOTROPHS in the PITUITARY GLAND. Growth Hormone-Releasing Factor,Somatocrinin,Somatotropin-Releasing Factor 44,Somatotropin-Releasing Hormone,GHRH 1-44,GRF 1-44,Growth Hormone-Releasing Factor 44,Human Pancreatic Growth Hormone-Releasing Factor,Somatoliberin,hpGRF 44,Growth Hormone Releasing Factor,Growth Hormone Releasing Factor 44,Growth Hormone Releasing Hormone,Somatotropin Releasing Factor 44,Somatotropin Releasing Hormone
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Weina Cui, and Chao Wang, and Ming Zhao, and Shiqi Peng
August 2003, Preparative biochemistry & biotechnology,
Weina Cui, and Chao Wang, and Ming Zhao, and Shiqi Peng
January 2002, Biotechnology progress,
Weina Cui, and Chao Wang, and Ming Zhao, and Shiqi Peng
January 1979, Proceedings of the National Academy of Sciences of the United States of America,
Weina Cui, and Chao Wang, and Ming Zhao, and Shiqi Peng
May 2013, Langmuir : the ACS journal of surfaces and colloids,
Weina Cui, and Chao Wang, and Ming Zhao, and Shiqi Peng
December 1979, The Journal of biological chemistry,
Weina Cui, and Chao Wang, and Ming Zhao, and Shiqi Peng
July 2004, Journal of periodontology,
Weina Cui, and Chao Wang, and Ming Zhao, and Shiqi Peng
December 1979, Journal of the Reticuloendothelial Society,
Weina Cui, and Chao Wang, and Ming Zhao, and Shiqi Peng
January 1992, Electron microscopy reviews,
Weina Cui, and Chao Wang, and Ming Zhao, and Shiqi Peng
May 2013, Biopolymers,
Weina Cui, and Chao Wang, and Ming Zhao, and Shiqi Peng
June 1993, Journal of immunological methods,
Copied contents to your clipboard!