ATPase inhibitor from yeast mitochondria. Purification and properties. 1975

M Satre, and M B de Jerphanion, and J Huet, and P V Vignais

1. Mitochondria from Candida utilis CBS 1516 and Sacchromyces cerevisiae JB 65 possess an ATPase-inhibitor activity. The inhibitor activity depends on the growth conditions of the yeast cells. It is markedly decreased when the cells are grown in the presence of a high concentration of glucose, which suggests that glucose represses the synthesis of the ATPase inhibitor or of a protein required for the insertion of the inhibitor into the inner mitochondrial membrane. 2. The ATPase inhibitor has been isolated from D. utilis mitochondria and purified to homogeneity. The minimal molecular weight calculated from amino acid composition is close to 7500. Dtermination of the molecular weight by sokium dodecylsulfate-polyacrylamide gel electrophoresis gives a value close to 6000. 3. The ATPas inhibitor of C. utilis mitochondria differs from the beef heart ATPase inhibitor by a number of properties. It has a lower molecular weight (6000-7500 vs 10500), a different amino acid composition, and a more acidic isoelectric point 5, 6 vs 7, 6). In spite of these differences, the C. utilis inhibitor cross-reacts with the ATPase of beef heart submitochondrial inhibitor-depleted particles. 4. The interaction of the C. utilis inhibitor with the ATPase of inhibitor-depleted particles requires the addition of Mg-2+-ATP or ATP in the incubation medium. 5. 14-C labelling of the C.utilis inhibitor has been achieved by growing C. utilis in a medium supplemented with [14-C]leucine. It has been found by titration experiments that the C. utilis 14-C-labelled inhibitor binds to the homologous submitochondrial inhibitor-depleted particles with a KD of about 10- minus 7 M. The number of binding sites is of the order of 0.1 nmol/mg protein.

UI MeSH Term Description Entries
D007525 Isoelectric Focusing Electrophoresis in which a pH gradient is established in a gel medium and proteins migrate until they reach the site (or focus) at which the pH is equal to their isoelectric point. Electrofocusing,Focusing, Isoelectric
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008931 Mitochondria, Muscle Mitochondria of skeletal and smooth muscle. It does not include myocardial mitochondria for which MITOCHONDRIA, HEART is available. Sarcosomes,Mitochondrion, Muscle,Muscle Mitochondria,Muscle Mitochondrion,Sarcosome
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D002175 Candida A genus of yeast-like mitosporic Saccharomycetales fungi characterized by producing yeast cells, mycelia, pseudomycelia, and blastophores. It is commonly part of the normal flora of the skin, mouth, intestinal tract, and vagina, but can cause a variety of infections, including CANDIDIASIS; ONYCHOMYCOSIS; VULVOVAGINAL CANDIDIASIS; and CANDIDIASIS, ORAL (THRUSH). Candida guilliermondii var. nitratophila,Candida utilis,Cyberlindnera jadinii,Hansenula jadinii,Lindnera jadinii,Monilia,Pichia jadinii,Saccharomyces jadinii,Torula utilis,Torulopsis utilis,Monilias
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002848 Chromatography, DEAE-Cellulose A type of ion exchange chromatography using diethylaminoethyl cellulose (DEAE-CELLULOSE) as a positively charged resin. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) DEAE-Cellulose Chromatography,Chromatography, DEAE Cellulose,DEAE Cellulose Chromatography
D003429 Cross Reactions Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen. Cross Reaction,Reaction, Cross,Reactions, Cross
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal

Related Publications

M Satre, and M B de Jerphanion, and J Huet, and P V Vignais
June 1976, Biochimica et biophysica acta,
M Satre, and M B de Jerphanion, and J Huet, and P V Vignais
January 1986, Methods in enzymology,
M Satre, and M B de Jerphanion, and J Huet, and P V Vignais
January 1984, Journal of biochemistry,
M Satre, and M B de Jerphanion, and J Huet, and P V Vignais
August 1988, The Journal of biological chemistry,
M Satre, and M B de Jerphanion, and J Huet, and P V Vignais
September 1981, The Journal of biological chemistry,
M Satre, and M B de Jerphanion, and J Huet, and P V Vignais
November 1993, Biochemistry and molecular biology international,
M Satre, and M B de Jerphanion, and J Huet, and P V Vignais
June 1975, Archives of biochemistry and biophysics,
M Satre, and M B de Jerphanion, and J Huet, and P V Vignais
January 1979, Methods in enzymology,
M Satre, and M B de Jerphanion, and J Huet, and P V Vignais
March 1972, The Journal of biological chemistry,
M Satre, and M B de Jerphanion, and J Huet, and P V Vignais
September 1982, FEBS letters,
Copied contents to your clipboard!