Tightly bound nucleotides of the energy-transducing ATPase of chloroplasts and their role in photophosphorylation. 1975

D A Harris, and E D Slater

1. Like other energy-transducing membranes, chloroplast membranes bear a coupling ATPase with especially tight binding sites for adenine nucleotides. Membranes washed several times still contain 2.5 nmol ATP and 1.3 nmol ADP bound per mg chlorophyll, which is equivalent to 1.9 ATP and 1.0 ADP per coupling ATPase. 2. In de-energized membranes, these nucleotides exchange to only a limited extent with added nucleotides. In membranes illuminated in the presence of pyocyanine, however, complete exchange of the bound nucleotides occurs rapidly, irrespective of whether ATP or ADP is present in the medium. 3. Pi can exchange into these nucleotided at both the beta and gamma positions when the membranes are energized in the presence of Mg-2+. Equilibrium with the beta and gamma groups of th ebound nucleotides is, however, not complete. 4. The inhibitors and uncouplers Dio-9, S13 and EDTA have different effects on the exchange of nucleotides, the exchange of inorganic phosphate and photophosphorylation. 5. The bound ATP level on the membrane is stable to a wide variety of conditions. The ADP level, however, drops to near zero under conditions of maximal activation of the emmbrane ATPase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D010785 Photophosphorylation The use of light to convert ADP to ATP without the concomitant reduction of dioxygen to water as occurs during OXIDATIVE PHOSPHORYLATION in MITOCHONDRIA. Photosynthetic Phosphorylation,Phosphorylation, Photosynthetic,Phosphorylations, Photosynthetic,Photophosphorylations,Photosynthetic Phosphorylations
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002734 Chlorophyll Porphyrin derivatives containing magnesium that act to convert light energy in photosynthetic organisms. Phyllobilins,Chlorophyll 740
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast

Related Publications

D A Harris, and E D Slater
October 1983, Journal of bioenergetics and biomembranes,
D A Harris, and E D Slater
September 1976, Biochimica et biophysica acta,
D A Harris, and E D Slater
October 1985, The Journal of biological chemistry,
D A Harris, and E D Slater
November 1983, European journal of biochemistry,
Copied contents to your clipboard!