Nitric oxide, cell death, and heart failure. 2002

Jun-ichi Oyama, and Stefan Frantz, and Charles Blais, and Ralph A Kelly, and Todd Bourcier
Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA.

Strong evidence links cardiomyocyte loss to the pathology of some forms of heart failure. Both necrotic and apoptotic modes of cell death have been invoked as the mechanism underlying progressive cardiomyocyte dropout. Nitric oxide (NO) has received particular attention as a candidate reactive oxygen intermediate that influences not only cardiac function, but also cell death elicited by both apoptotic and necrotic mechanisms. NO is produced by resident cardiac cells under stress, and is produced in large quantities by activated immune cells that infiltrate the injured heart. A review of the literature, however, reveals that the actions of NO on apoptotic cell death are complex, especially in the context of heart disease, and that the practical contribution of NO to cell death in heart disease is yet to be defined.

UI MeSH Term Description Entries
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D006333 Heart Failure A heterogeneous condition in which the heart is unable to pump out sufficient blood to meet the metabolic need of the body. Heart failure can be caused by structural defects, functional abnormalities (VENTRICULAR DYSFUNCTION), or a sudden overload beyond its capacity. Chronic heart failure is more common than acute heart failure which results from sudden insult to cardiac function, such as MYOCARDIAL INFARCTION. Cardiac Failure,Heart Decompensation,Congestive Heart Failure,Heart Failure, Congestive,Heart Failure, Left-Sided,Heart Failure, Right-Sided,Left-Sided Heart Failure,Myocardial Failure,Right-Sided Heart Failure,Decompensation, Heart,Heart Failure, Left Sided,Heart Failure, Right Sided,Left Sided Heart Failure,Right Sided Heart Failure
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015428 Myocardial Reperfusion Injury Damage to the MYOCARDIUM resulting from MYOCARDIAL REPERFUSION (restoration of blood flow to ischemic areas of the HEART.) Reperfusion takes place when there is spontaneous thrombolysis, THROMBOLYTIC THERAPY, collateral flow from other coronary vascular beds, or reversal of vasospasm. Reperfusion Injury, Myocardial,Injury, Myocardial Reperfusion,Myocardial Ischemic Reperfusion Injury,Injuries, Myocardial Reperfusion,Myocardial Reperfusion Injuries,Reperfusion Injuries, Myocardial
D016027 Heart Transplantation The transference of a heart from one human or animal to another. Cardiac Transplantation,Grafting, Heart,Transplantation, Cardiac,Transplantation, Heart,Cardiac Transplantations,Graftings, Heart,Heart Grafting,Heart Graftings,Heart Transplantations,Transplantations, Cardiac,Transplantations, Heart
D016147 Genes, Tumor Suppressor Genes that inhibit expression of the tumorigenic phenotype. They are normally involved in holding cellular growth in check. When tumor suppressor genes are inactivated or lost, a barrier to normal proliferation is removed and unregulated growth is possible. Antioncogenes,Cancer Suppressor Genes,Emerogenes,Genes, Cancer Suppressor,Genes, Growth Suppressor,Genes, Metastasis Suppressor,Growth Suppressor Genes,Metastasis Suppressor Genes,Tumor Suppressor Genes,Anti-Oncogenes,Genes, Onco-Suppressor,Oncogenes, Recessive,Tumor Suppressing Genes,Anti Oncogenes,Anti-Oncogene,Antioncogene,Cancer Suppressor Gene,Emerogene,Gene, Cancer Suppressor,Gene, Growth Suppressor,Gene, Metastasis Suppressor,Gene, Onco-Suppressor,Gene, Tumor Suppressing,Gene, Tumor Suppressor,Genes, Onco Suppressor,Genes, Tumor Suppressing,Growth Suppressor Gene,Metastasis Suppressor Gene,Onco-Suppressor Gene,Onco-Suppressor Genes,Oncogene, Recessive,Recessive Oncogene,Recessive Oncogenes,Suppressor Gene, Cancer,Suppressor Gene, Growth,Suppressor Gene, Metastasis,Suppressor Genes, Cancer,Suppressor Genes, Growth,Suppressor Genes, Metastasis,Tumor Suppressing Gene,Tumor Suppressor Gene
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D018487 Ventricular Dysfunction, Left A condition in which the LEFT VENTRICLE of the heart was functionally impaired. This condition usually leads to HEART FAILURE; MYOCARDIAL INFARCTION; and other cardiovascular complications. Diagnosis is made by measuring the diminished ejection fraction and a depressed level of motility of the left ventricular wall. LV Diastolic Dysfunction,LV Dysfunction,LV Systolic Dysfunction,Left Ventricular Diastolic Dysfunction,Left Ventricular Dysfunction,Left Ventricular Systolic Dysfunction,Diastolic Dysfunction, LV,Dysfunction, LV,Dysfunction, LV Diastolic,Dysfunction, LV Systolic,Dysfunction, Left Ventricular,LV Diastolic Dysfunctions,LV Dysfunctions,LV Systolic Dysfunctions,Left Ventricular Dysfunctions,Systolic Dysfunction, LV

Related Publications

Jun-ichi Oyama, and Stefan Frantz, and Charles Blais, and Ralph A Kelly, and Todd Bourcier
September 2004, Nihon rinsho. Japanese journal of clinical medicine,
Jun-ichi Oyama, and Stefan Frantz, and Charles Blais, and Ralph A Kelly, and Todd Bourcier
May 1999, Biochimica et biophysica acta,
Jun-ichi Oyama, and Stefan Frantz, and Charles Blais, and Ralph A Kelly, and Todd Bourcier
April 2000, International journal of cardiology,
Jun-ichi Oyama, and Stefan Frantz, and Charles Blais, and Ralph A Kelly, and Todd Bourcier
February 1995, Lancet (London, England),
Jun-ichi Oyama, and Stefan Frantz, and Charles Blais, and Ralph A Kelly, and Todd Bourcier
March 2005, Toxicology,
Jun-ichi Oyama, and Stefan Frantz, and Charles Blais, and Ralph A Kelly, and Todd Bourcier
January 2001, IUBMB life,
Jun-ichi Oyama, and Stefan Frantz, and Charles Blais, and Ralph A Kelly, and Todd Bourcier
August 2000, Circulation,
Jun-ichi Oyama, and Stefan Frantz, and Charles Blais, and Ralph A Kelly, and Todd Bourcier
April 2001, Monaldi archives for chest disease = Archivio Monaldi per le malattie del torace,
Jun-ichi Oyama, and Stefan Frantz, and Charles Blais, and Ralph A Kelly, and Todd Bourcier
March 2013, Antioxidants & redox signaling,
Jun-ichi Oyama, and Stefan Frantz, and Charles Blais, and Ralph A Kelly, and Todd Bourcier
August 1994, Lancet (London, England),
Copied contents to your clipboard!