Enhanced calcium signaling to bradykinin in airway smooth muscle from hyperresponsive inbred rats. 2003

F C Tao, and S Shah, and A A Pradhan, and B Tolloczko, and J G Martin
Meakins-Christie Laboratories, McGill University, 3626 St. Urbain Street, Montreal, Quebec, Canada H2X 2P2.

Inbred Fischer 344 rats display airway hyperresponsiveness (AHR) in vivo compared with the normoresponsive Lewis strain. Fischer AHR has been linked with increased airway smooth muscle (ASM) contraction ex vivo and enhanced ASM cell intracellular Ca(2+) mobilization in response to serotonin compared with Lewis. To determine the generality of this association, we tested whether bradykinin (BK) also stimulates greater contraction of Fischer airways and greater Ca(2+) mobilization in Fischer ASM cells. Explants of Fischer intraparenchymal airways constricted faster and to a greater degree in response to BK than Lewis airways. BK also evoked higher Ca(2+) transients in Fischer than in Lewis ASM cells. ASM cell B(2) receptor expression was similar between the two strains. BK activated both phosphatidylinositide-specific phospholipase C (PI-PLC) and phosphatidylcholine-specific PLC to mobilize Ca(2+) in Fischer and Lewis ASM cells. PI-PLC activity, as measured by inositol polyphosphate accumulation, was similar in the two strains. PKC inhibition with GF109203X, Go6973, or Go6983 attenuated BK-mediated Ca(2+) transients in Fischer cells, whereas GF109203X potentiated while Go6976 and Go6983 did not affect Ca(2+) transients in Lewis cells. Enhanced Ca(2+) mobilization in ASM cells can arise from variations in PKC and may be an important component of nonspecific, innate AHR.

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D011917 Rats, Inbred Lew An inbred strain of rat that is used in BIOMEDICAL RESEARCH. Rats, Inbred Lewis,Rats, Lew,Inbred Lew Rat,Inbred Lew Rats,Inbred Lewis Rats,Lew Rat,Lew Rat, Inbred,Lew Rats,Lew Rats, Inbred,Lewis Rats, Inbred,Rat, Inbred Lew,Rat, Lew
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation

Related Publications

F C Tao, and S Shah, and A A Pradhan, and B Tolloczko, and J G Martin
October 2000, American journal of respiratory cell and molecular biology,
F C Tao, and S Shah, and A A Pradhan, and B Tolloczko, and J G Martin
November 1996, American journal of respiratory cell and molecular biology,
F C Tao, and S Shah, and A A Pradhan, and B Tolloczko, and J G Martin
January 2000, American journal of physiology. Lung cellular and molecular physiology,
F C Tao, and S Shah, and A A Pradhan, and B Tolloczko, and J G Martin
January 1999, Research communications in molecular pathology and pharmacology,
F C Tao, and S Shah, and A A Pradhan, and B Tolloczko, and J G Martin
January 2008, Proceedings of the American Thoracic Society,
F C Tao, and S Shah, and A A Pradhan, and B Tolloczko, and J G Martin
July 2001, British journal of pharmacology,
F C Tao, and S Shah, and A A Pradhan, and B Tolloczko, and J G Martin
December 2003, Journal of smooth muscle research = Nihon Heikatsukin Gakkai kikanshi,
F C Tao, and S Shah, and A A Pradhan, and B Tolloczko, and J G Martin
October 2002, Journal of applied physiology (Bethesda, Md. : 1985),
F C Tao, and S Shah, and A A Pradhan, and B Tolloczko, and J G Martin
June 2001, Inflammation research : official journal of the European Histamine Research Society ... [et al.],
F C Tao, and S Shah, and A A Pradhan, and B Tolloczko, and J G Martin
November 2000, Canadian journal of physiology and pharmacology,
Copied contents to your clipboard!