Nicotinic receptors mediate increased GABA release in brain through a tetrodotoxin-insensitive mechanism during prolonged exposure to nicotine. 2002

P J Zhu, and V A Chiappinelli
Department of Pharmacology, The George Washington University Medical Center, Washington, DC 20037, USA. pzhu@mail.nih.gov

The effects of nicotine on the spontaneous release of GABA from nerve terminals in the chick lateral spiriform nucleus were examined using whole cell patch-clamp recording in brain slices. Exposure to 1 microM nicotine produced an early immediate increase in the frequency of spontaneous postsynaptic GABAergic currents. This effect was blocked in the presence of 0.5 microM tetrodotoxin. However, a prolonged application of 0.1-1 microM nicotine (>3 min) caused a tetrodotoxin-insensitive increase in the frequency of spontaneous GABAergic currents. This late tetrodotoxin-insensitive effect was blocked by the nicotinic antagonists dihydro-beta-erythroidine (30 microM) and mecamylamine (10 microM), but not by methyllycaconitine (50-100 nM), indicating that activation of high affinity nicotine receptors was mainly responsible for this effect. This enhancement was inhibited by the high threshold Ca(2+) channel blocker Cd(2+) (100 microM), but not by dantrolene or ryanodine. The tetrodotoxin-insensitive enhancement of the frequency of GABA currents by nicotine was reduced by inhibition of cAMP-dependent protein kinase with HA1004 (30 microM), but not by inhibition of protein kinase C with staurosporine (1 microM), and was facilitated by forskolin (10 microM) or bromo-cAMP (50 microM). The results indicate that nicotine-enhanced GABA release can operate through both tetrodotoxin-sensitive and -insensitive mechanisms in a single brain region and that a second messenger cascade may be involved in the tetrodotoxin-insensitive enhancement by nicotine.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009538 Nicotine Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine Bitartrate,Nicotine Tartrate
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

P J Zhu, and V A Chiappinelli
June 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P J Zhu, and V A Chiappinelli
January 1989, Progress in brain research,
P J Zhu, and V A Chiappinelli
May 2007, Proceedings of the National Academy of Sciences of the United States of America,
P J Zhu, and V A Chiappinelli
January 2000, Archives of medical research,
P J Zhu, and V A Chiappinelli
February 1999, Journal of neurophysiology,
Copied contents to your clipboard!