Arm blood flow and metabolism during arm and combined arm and leg exercise in humans. 2002

S Volianitis, and N H Secher
Copenhagen Muscle Research Centre, Department of Anaesthesia, Rigshospitalet, Denmark. Stefanos.Volianitis@excite.com

The cardiovascular response to exercise with several groups of skeletal muscle suggests that work with the arms may decrease leg blood flow. This study evaluated whether intense exercise with the legs would have a similar effect on arm blood flow (Y(arm)) and O(2) consumption (V(O(2))(,arm)). Ten healthy male subjects (age 21 +/- 1 year; mean +/- S.D.) performed arm cranking at 80 % of maximum arm work capacity (A trial) and combined arm cranking with cycling at 60 % of maximum leg work capacity (A + L trial). The combined trial was a maximum effort for 5-6 min. Y(arm) measurement by thermodilution in the axilliary vein and arterial and venous blood samples permitted calculation of V(O(2))(,arm). During the combined trial, Y(arm) was reduced by 0.58 +/- 0.25 l min(-1) (19.1 +/- 3.0 %, P < 0.05) from the value during arm cranking (3.00 +/- 0.46 l min(-1)). The arterio-venous O(2) difference increased from 122 +/- 15 ml l(-1) during the arm trial to 150 +/- 21 ml l(-1) (P < 0.05) during the combined trial. Thus, V(O(2))(,arm) (0.45 +/- 0.06 l min(-1)) was reduced by 9.6 +/- 6.3 % (P < 0.05) and arm vascular conductance from 27 +/- 4 to 23 +/- 3 ml min(-1) (mmHg)(-1) (P < 0.05) as noradrenaline spillover from the arm increased from 7.5 +/- 3.5 to 13.8 +/- 4.2 nmol min(-1) (P < 0.05). The data suggest that during maximal whole body exercise in humans, arm vasoconstriction is established to an extent that affects oxygen delivery to and utilisation by working skeletal muscles.

UI MeSH Term Description Entries
D007866 Leg The inferior part of the lower extremity between the KNEE and the ANKLE. Legs
D008297 Male Males
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D001132 Arm The superior part of the upper extremity between the SHOULDER and the ELBOW. Brachium,Upper Arm,Arm, Upper,Arms,Arms, Upper,Brachiums,Upper Arms

Related Publications

S Volianitis, and N H Secher
December 1981, Journal of human ergology,
S Volianitis, and N H Secher
May 1984, Journal of applied physiology: respiratory, environmental and exercise physiology,
S Volianitis, and N H Secher
March 1969, Journal of applied physiology,
S Volianitis, and N H Secher
July 1957, The Journal of physiology,
S Volianitis, and N H Secher
June 2008, European journal of applied physiology,
S Volianitis, and N H Secher
January 1992, Acta physiologica Scandinavica,
S Volianitis, and N H Secher
March 1977, Journal of applied physiology: respiratory, environmental and exercise physiology,
S Volianitis, and N H Secher
October 2017, Physiological reports,
S Volianitis, and N H Secher
November 1958, Clinical science,
S Volianitis, and N H Secher
January 1999, The Journal of physiology,
Copied contents to your clipboard!