The Opitz syndrome gene Mid1 is transcribed from a human endogenous retroviral promoter. 2002

Josette-Renée Landry, and Arefeh Rouhi, and Patrik Medstrand, and Dixie L Mager
Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada.

Human endogenous retroviruses (HERVs) and other long terminal repeat (LTR)-containing elements comprise a significant portion (8%) of the human genome and are likely vestiges of retroviral infections during primate evolution. Many of the HERVs present in human DNA have retained functional promoter, enhancer, and polyadenylation signals, and these regulatory sequences have the potential to modify the expression of nearby genes. To identify retroviral elements that contribute to the transcription of human genes, we screened sequence databases for chimeric (viral-cellular) transcripts. These searches revealed a fusion transcript containing the LTR of an HERV-E element linked to the Opitz syndrome gene Mid1. We confirmed the authenticity of the chimeric transcript by 5' rapid amplification of cDNA ends (RACE) and established that the Mid1 mRNA isoform was transcribed from a retroviral LTR. The identification of a retroviral first exon suggested the existence of alternative promoters for Mid1 because nonretroviral (native) 5' untranslated regions (UTRs) had been reported previously for this gene. Although Mid1 transcripts could be detected in all tissues tested, quantitative real-time reverse transcription-polymerase chain reaction indicated that the retroviral promoter contributes significantly to the level of Mid1 transcripts in placenta and embryonic kidney, where chimeric mRNAs were found to represent 25% and 22% of overall Mid1 mRNAs, respectively. Transient transfection studies supported a role for the LTR as a strong tissue-specific promoter in placental and embryonic kidney cell lines and suggested a function for the LTR as an enhancer. These findings provide further evidence that some endogenous retroviruses have evolved a biological function by contributing transcriptional regulatory elements to cellular genes.

UI MeSH Term Description Entries
D008868 Microtubule Proteins Proteins found in the microtubules. Proteins, Microtubule
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D017384 Sequence Deletion Deletion of sequences of nucleic acids from the genetic material of an individual. Deletion Mutation,Deletion Mutations,Deletion, Sequence,Deletions, Sequence,Mutation, Deletion,Mutations, Deletion,Sequence Deletions

Related Publications

Josette-Renée Landry, and Arefeh Rouhi, and Patrik Medstrand, and Dixie L Mager
March 1999, Proceedings of the National Academy of Sciences of the United States of America,
Josette-Renée Landry, and Arefeh Rouhi, and Patrik Medstrand, and Dixie L Mager
May 2004, Journal of medical genetics,
Josette-Renée Landry, and Arefeh Rouhi, and Patrik Medstrand, and Dixie L Mager
June 2003, Developmental biology,
Josette-Renée Landry, and Arefeh Rouhi, and Patrik Medstrand, and Dixie L Mager
March 2008, Human genetics,
Josette-Renée Landry, and Arefeh Rouhi, and Patrik Medstrand, and Dixie L Mager
May 2011, Mobile DNA,
Josette-Renée Landry, and Arefeh Rouhi, and Patrik Medstrand, and Dixie L Mager
April 2023, Pediatric research,
Josette-Renée Landry, and Arefeh Rouhi, and Patrik Medstrand, and Dixie L Mager
April 1987, Journal of virology,
Josette-Renée Landry, and Arefeh Rouhi, and Patrik Medstrand, and Dixie L Mager
November 2002, Genomics,
Josette-Renée Landry, and Arefeh Rouhi, and Patrik Medstrand, and Dixie L Mager
September 2023, Molecular genetics & genomic medicine,
Josette-Renée Landry, and Arefeh Rouhi, and Patrik Medstrand, and Dixie L Mager
January 2016, Mobile DNA,
Copied contents to your clipboard!