Sulfamoyloxy-substituted 2-phenylindoles: antiestrogen-based inhibitors of the steroid sulfatase in human breast cancer cells. 2002

Thomas Golob, and Renate Liebl, and Erwin von Angerer
Institut für Pharmazie, Universität Regensburg, D-93040 Regensburg, Germany.

Estrone sulfate (E1S) is an endogenous prodrug that delivers estrone and, subsequently, estradiol to the target cells following the hydrolysis by the enzyme estrone sulfatase which is active in various tissues including hormone dependent breast cancer cells. Blockade of this enzyme should reduce the estrogen level in breast cancer cells and prevent hormonal growth stimulation. Sulfamates of a variety of phenolic compounds have been shown to be inhibitors of estrone sulfatase. Our rational is based on findings that these inhibitors can undergo hydrolysis and the pharmacological effects of the free hydroxy compounds contribute to the bioactivity of the sulfamates. A desirable action of the metabolites would be an estrogen antagonism to block stimulatory effects of residual amounts of estrogens. Thus, we synthesized a number of sulfamoyloxy-substituted 2-phenylindoles with side chains at the indole nitrogen that guarantee antiestrogenic activity. All of the new sulfamates were studied for their inhibitory effects on the enzyme estrone sulfatase from human breast cancer cells and their (anti)hormonal activities in stably transfected human MCF-7/2a mammary carcinoma cells. The hormonal profile of the sulfamates was partly reflected by the properties of the corresponding hydroxy precursors. Some of the sulfamoylated antiestrogens strongly inhibited estrone sulfatase activity with IC(50) values in the submicromolar range. They were devoid of agonist activity and suppressed estrone sulfate-stimulated gene expression mainly by blocking the enzyme. Examples are the disulfamates of the indoles ZK 119, 010 and ZK 164, 015. Their IC(50)s for sulfatase inhibition were 0.3 and 0.2 microM, respectively, and 50 and 80 nM, respectively, for the inhibition of E1S-stimulated luciferase expression in transfected MCF-7 cells. With some of the new sulfamates an additional direct antiestrogenic effect was noticed which might be due to a partial hydrolysis during incubation and would improve the growth inhibitory effect on estrogen-sensitive breast cancer cells.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001192 Arylsulfatases Enzymes that catalyze the hydrolysis of a phenol sulfate to yield a phenol and sulfate. Arylsulfatase A, B, and C have been separated. A deficiency of arylsulfatases is one of the causes of metachromatic leukodystrophy (LEUKODYSTROPHY, METACHROMATIC). EC 3.1.6.1. Arylsulfatase,Arylsulfate Sulfohydrolase,Arylsulfate Sulfohydrolases,Arylsulphatase,Arylsulphatases,Pseudo Arylsulfatase A,Sulfohydrolase, Arylsulfate
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013429 Sulfatases A class of enzymes that catalyze the hydrolysis of sulfate ESTERS. Sulfatase
D013451 Sulfonic Acids Inorganic or organic oxy acids of sulfur which contain the RSO2(OH) radical. Sulfonic Acid,Acid, Sulfonic,Acids, Sulfonic

Related Publications

Thomas Golob, and Renate Liebl, and Erwin von Angerer
September 2002, Journal of medicinal chemistry,
Thomas Golob, and Renate Liebl, and Erwin von Angerer
April 2004, The Journal of steroid biochemistry and molecular biology,
Thomas Golob, and Renate Liebl, and Erwin von Angerer
September 2005, Current medicinal chemistry. Anti-cancer agents,
Thomas Golob, and Renate Liebl, and Erwin von Angerer
April 2013, JPMA. The Journal of the Pakistan Medical Association,
Thomas Golob, and Renate Liebl, and Erwin von Angerer
October 1999, Breast cancer (Tokyo, Japan),
Thomas Golob, and Renate Liebl, and Erwin von Angerer
May 2011, The Journal of steroid biochemistry and molecular biology,
Thomas Golob, and Renate Liebl, and Erwin von Angerer
July 2004, Medicinal research reviews,
Thomas Golob, and Renate Liebl, and Erwin von Angerer
June 1974, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Thomas Golob, and Renate Liebl, and Erwin von Angerer
December 2004, Archiv der Pharmazie,
Thomas Golob, and Renate Liebl, and Erwin von Angerer
April 1984, The Journal of biological chemistry,
Copied contents to your clipboard!