1-Methoxy-, 1-deoxy-11-hydroxy- and 11-hydroxy-1-methoxy-Delta(8)-tetrahydrocannabinols: new selective ligands for the CB2 receptor. 2002

John W Huffman, and Simon M Bushell, and John R A Miller, and Jenny L Wiley, and Billy R Martin
Howard L. Hunter Laboratory, Clemson University, Clemson, SC 29634-1905, USA. huffman@clemson.edu

Three series of new cannabinoids were prepared and their affinities for the CB(1) and CB(2) cannabinoid recptors were determined. These are the 1-methoxy-3-(1',1'-dimethylalkyl)-, 1-deoxy-11-hydroxy-3-(1',1'-dimethylalkyl)- and 11-hydroxy-1-methoxy-3-(1',1'-dimethylalkyl)-Delta(8)-tetrahydrocannabinols, which contain alkyl chains from dimethylethyl to dimethylheptyl appended to C-3 of the cannabinoid. All of these compounds have greater affinity for the CB(2) receptor than for the CB(1) receptor, however only 1-methoxy-3-(1',1'-dimethylhexyl)-Delta(8)-THC (JWH-229, 6e) has effectively no affinity for the CB(1) receptor (K(i)=3134+/-110nM) and high affinity for CB(2) (K(i)=18+/-2nM).

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013759 Dronabinol A psychoactive compound extracted from the resin of Cannabis sativa (marihuana, hashish). The isomer delta-9-tetrahydrocannabinol (THC) is considered the most active form, producing characteristic mood and perceptual changes associated with this compound. THC,Tetrahydrocannabinol,delta(9)-THC,9-ene-Tetrahydrocannabinol,Marinol,Tetrahydrocannabinol, (6a-trans)-Isomer,Tetrahydrocannabinol, (6aR-cis)-Isomer,Tetrahydrocannabinol, (6aS-cis)-Isomer,Tetrahydrocannabinol, Trans-(+-)-Isomer,Tetrahydrocannabinol, Trans-Isomer,delta(1)-THC,delta(1)-Tetrahydrocannabinol,delta(9)-Tetrahydrocannabinol,9 ene Tetrahydrocannabinol,Tetrahydrocannabinol, Trans Isomer
D043882 Receptors, Cannabinoid A class of G-protein-coupled receptors that are specific for CANNABINOIDS such as those derived from CANNABIS. They also bind a structurally distinct class of endogenous factors referred to as ENDOCANNABINOIDS. The receptor class may play a role in modulating the release of signaling molecules such as NEUROTRANSMITTERS and CYTOKINES. Cannabinoid Receptor,Cannabinoid Receptors,Receptor, Cannabinoid

Related Publications

John W Huffman, and Simon M Bushell, and John R A Miller, and Jenny L Wiley, and Billy R Martin
April 2006, Bioorganic & medicinal chemistry,
John W Huffman, and Simon M Bushell, and John R A Miller, and Jenny L Wiley, and Billy R Martin
November 2010, Bioorganic & medicinal chemistry,
John W Huffman, and Simon M Bushell, and John R A Miller, and Jenny L Wiley, and Billy R Martin
December 1999, Bioorganic & medicinal chemistry,
John W Huffman, and Simon M Bushell, and John R A Miller, and Jenny L Wiley, and Billy R Martin
December 2002, Bioorganic & medicinal chemistry letters,
John W Huffman, and Simon M Bushell, and John R A Miller, and Jenny L Wiley, and Billy R Martin
September 2000, Current pharmaceutical design,
John W Huffman, and Simon M Bushell, and John R A Miller, and Jenny L Wiley, and Billy R Martin
January 1988, Life sciences,
John W Huffman, and Simon M Bushell, and John R A Miller, and Jenny L Wiley, and Billy R Martin
January 2005, Current medicinal chemistry,
John W Huffman, and Simon M Bushell, and John R A Miller, and Jenny L Wiley, and Billy R Martin
January 2008, British journal of pharmacology,
John W Huffman, and Simon M Bushell, and John R A Miller, and Jenny L Wiley, and Billy R Martin
December 1973, Life sciences,
John W Huffman, and Simon M Bushell, and John R A Miller, and Jenny L Wiley, and Billy R Martin
January 2014, Current medicinal chemistry,
Copied contents to your clipboard!