Signalling by glial cell line-derived neurotrophic factor (GDNF) requires heparan sulphate glycosaminoglycan. 2002

Mark W Barnett, and Carolyn E Fisher, and Georgia Perona-Wright, and Jamie A Davies
Edinburgh University Medical School, Teviot Place, Edinburgh EH8 9AG, UK.

Glial cell line-derived neurotrophic factor, GDNF, is vital to the development and maintenance of neural tissues; it promotes survival of sympathetic, parasympathetic and spinal motor neurons during development, protects midbrain dopaminergic neurons from apoptosis well enough to be a promising treatment for Parkinson's disease, and controls renal and testicular development. Understanding how GDNF interacts with its target cells is therefore a priority in several fields. Here we show that GDNF requires glycosaminoglycans as well as the already-known components of its receptor complex, c-Ret and GFRalpha-1. Without glycosaminoglcyans, specifically heparan sulphate, c-Ret phosphorylation fails and GDNF cannot induce axonogenesis in neurons, in PC-12 cells, or scatter of epithelial cells. Furthermore, exogenous heparan sulphate inhibits rather than assists GDNF signalling. The involvement of heparan sulphates in GDNF signalling raises the possibility that modulation of heparan expression may modulate signalling by GDNF in vivo.

UI MeSH Term Description Entries
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002809 Chondroitin Sulfates Derivatives of chondroitin which have a sulfate moiety esterified to the galactosamine moiety of chondroitin. Chondroitin sulfate A, or chondroitin 4-sulfate, and chondroitin sulfate C, or chondroitin 6-sulfate, have the sulfate esterified in the 4- and 6-positions, respectively. Chondroitin sulfate B (beta heparin; DERMATAN SULFATE) is a misnomer and this compound is not a true chondroitin sulfate. Chondroitin 4-Sulfate,Chondroitin 6-Sulfate,Chondroitin Sulfate A,Chondroitin Sulfate C,Blutal,Chondroitin 4-Sulfate, Aluminum Salt,Chondroitin 4-Sulfate, Potassium Salt,Chondroitin 6-Sulfate, Potassium Salt,Chondroitin 6-Sulfate, Sodium Salt,Chondroitin Sulfate,Chondroitin Sulfate 4-Sulfate, Sodium Salt,Chondroitin Sulfate, Calcium Salt,Chondroitin Sulfate, Iron (+3) Salt,Chondroitin Sulfate, Iron Salt,Chondroitin Sulfate, Potassium Salt,Chondroitin Sulfate, Sodium Salt,Chondroitin Sulfate, Zinc Salt,Chonsurid,Sodium Chondroitin Sulfate,Translagen,Chondroitin 4 Sulfate,Chondroitin 4 Sulfate, Aluminum Salt,Chondroitin 4 Sulfate, Potassium Salt,Chondroitin 6 Sulfate,Chondroitin 6 Sulfate, Potassium Salt,Chondroitin 6 Sulfate, Sodium Salt,Chondroitin Sulfate 4 Sulfate, Sodium Salt,Chondroitin Sulfate, Sodium,Sulfate, Chondroitin,Sulfate, Sodium Chondroitin,Sulfates, Chondroitin
D003871 Dermatan Sulfate A naturally occurring glycosaminoglycan found mostly in the skin and in connective tissue. It differs from CHONDROITIN SULFATE A (see CHONDROITIN SULFATES) by containing IDURONIC ACID in place of glucuronic acid, its epimer, at carbon atom 5. (from Merck, 12th ed) Chondroitin Sulfate B,beta-Heparin,Sulfate B, Chondroitin,Sulfate, Dermatan,beta Heparin
D006025 Glycosaminoglycans Heteropolysaccharides which contain an N-acetylated hexosamine in a characteristic repeating disaccharide unit. The repeating structure of each disaccharide involves alternate 1,4- and 1,3-linkages consisting of either N-acetylglucosamine (see ACETYLGLUCOSAMINE) or N-acetylgalactosamine (see ACETYLGALACTOSAMINE). Glycosaminoglycan,Mucopolysaccharides
D006497 Heparitin Sulfate A heteropolysaccharide that is similar in structure to HEPARIN. It accumulates in individuals with MUCOPOLYSACCHARIDOSIS. Heparan Sulfate,Sulfate, Heparan,Sulfate, Heparitin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Mark W Barnett, and Carolyn E Fisher, and Georgia Perona-Wright, and Jamie A Davies
January 1999, Microscopy research and technique,
Mark W Barnett, and Carolyn E Fisher, and Georgia Perona-Wright, and Jamie A Davies
February 2015, Translational psychiatry,
Mark W Barnett, and Carolyn E Fisher, and Georgia Perona-Wright, and Jamie A Davies
December 1994, Neuroreport,
Mark W Barnett, and Carolyn E Fisher, and Georgia Perona-Wright, and Jamie A Davies
January 1999, Folia morphologica,
Mark W Barnett, and Carolyn E Fisher, and Georgia Perona-Wright, and Jamie A Davies
December 2019, Gut,
Mark W Barnett, and Carolyn E Fisher, and Georgia Perona-Wright, and Jamie A Davies
April 2007, Acta medica Okayama,
Mark W Barnett, and Carolyn E Fisher, and Georgia Perona-Wright, and Jamie A Davies
July 2001, Kidney international,
Mark W Barnett, and Carolyn E Fisher, and Georgia Perona-Wright, and Jamie A Davies
December 1995, Human genetics,
Mark W Barnett, and Carolyn E Fisher, and Georgia Perona-Wright, and Jamie A Davies
May 1993, Science (New York, N.Y.),
Mark W Barnett, and Carolyn E Fisher, and Georgia Perona-Wright, and Jamie A Davies
October 2014, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!