Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced inflammatory skin edema and ornithine decarboxylase activity by theaflavin-3,3'-digallate in mouse. 2002

Yu-Chih Liang, and De-Cheng Tsai, and Shoei-Yn Lin-Shiau, and Chieh-Fu Chen, and Chi-Tang Ho, and Jen-Kun Lin
Institute of Biochemistry, College of Medicine, National Taiwan University, Taipei, Taiwan.

Among black tea polyphenols, theaflavins were generally considered to be the most effective in cancer chemoprevention. In this study, we examined the inhibitory effects of black tea polyphenols, including theaflavin (TF-1), a mixture (TF-2) of theaflavin-3-gallate and theaflavin-3'-gallate, theaflavin-3,3'-digallate (TF-3), and the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced edema and ornithine decarboxylase (ODC) activity. Topical application of these polyphenols onto the mouse resulted in inhibition of TPA-induced ear edema and skin epidermal ODC activity. The inhibitory order was as follows: TF-3 > TF-2 approximately equal to EGCG > TF-1. Western and Northern blots indicated that TF-3 significantly reduced the protein and mRNA levels of ODC in TPA-treated mouse skin and NIH 3T3 cells, whereas EGCG showed less activity. EGCG and TF-3 were able to inhibit the ODC enzyme activity in vitro. Furthermore, TF-3 also significantly reduced the basal promoter activity of the ODC gene in NIH 3T3 cells that were transiently transfected with ODC reporter plasmid. These results suggested that TF-3 was a potential inhibitor of ODC activity and TPA-induced edema and might be effective in cancer chemoprevention.

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D009955 Ornithine Decarboxylase A pyridoxal-phosphate protein, believed to be the rate-limiting compound in the biosynthesis of polyamines. It catalyzes the decarboxylation of ornithine to form putrescine, which is then linked to a propylamine moiety of decarboxylated S-adenosylmethionine to form spermidine. Ornithine Carboxy-lyase,Carboxy-lyase, Ornithine,Decarboxylase, Ornithine,Ornithine Carboxy lyase
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002392 Catechin An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Catechinic Acid,Catechuic Acid,(+)-Catechin,(+)-Cyanidanol,(+)-Cyanidanol-3,(-)-Epicatechin,(2R,3R)-2-(3,4-Dihydroxyphenyl)-3,5,7-chromanetriol,2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2R-cis)-,3,3',4',5,7-Flavanpentol,Catergen,Cianidanol,Cyanidanol-3,Epicatechin,KB-53,Z 7300,Zyma,Cyanidanol 3,KB 53,KB53
D004487 Edema Abnormal fluid accumulation in TISSUES or body cavities. Most cases of edema are present under the SKIN in SUBCUTANEOUS TISSUE. Dropsy,Hydrops,Anasarca
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005260 Female Females
D005707 Gallic Acid A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. 3,4,5-Trihydroxybenzoic Acid,Acid, Gallic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Yu-Chih Liang, and De-Cheng Tsai, and Shoei-Yn Lin-Shiau, and Chieh-Fu Chen, and Chi-Tang Ho, and Jen-Kun Lin
April 1986, Cancer research,
Yu-Chih Liang, and De-Cheng Tsai, and Shoei-Yn Lin-Shiau, and Chieh-Fu Chen, and Chi-Tang Ho, and Jen-Kun Lin
February 1989, Carcinogenesis,
Yu-Chih Liang, and De-Cheng Tsai, and Shoei-Yn Lin-Shiau, and Chieh-Fu Chen, and Chi-Tang Ho, and Jen-Kun Lin
March 1978, Cancer research,
Yu-Chih Liang, and De-Cheng Tsai, and Shoei-Yn Lin-Shiau, and Chieh-Fu Chen, and Chi-Tang Ho, and Jen-Kun Lin
January 1983, The International journal of biochemistry,
Yu-Chih Liang, and De-Cheng Tsai, and Shoei-Yn Lin-Shiau, and Chieh-Fu Chen, and Chi-Tang Ho, and Jen-Kun Lin
November 1983, Cancer letters,
Yu-Chih Liang, and De-Cheng Tsai, and Shoei-Yn Lin-Shiau, and Chieh-Fu Chen, and Chi-Tang Ho, and Jen-Kun Lin
February 1996, Molecular and cellular biochemistry,
Yu-Chih Liang, and De-Cheng Tsai, and Shoei-Yn Lin-Shiau, and Chieh-Fu Chen, and Chi-Tang Ho, and Jen-Kun Lin
August 1996, Molecular pharmacology,
Yu-Chih Liang, and De-Cheng Tsai, and Shoei-Yn Lin-Shiau, and Chieh-Fu Chen, and Chi-Tang Ho, and Jen-Kun Lin
June 2000, Chemico-biological interactions,
Yu-Chih Liang, and De-Cheng Tsai, and Shoei-Yn Lin-Shiau, and Chieh-Fu Chen, and Chi-Tang Ho, and Jen-Kun Lin
November 1987, Carcinogenesis,
Yu-Chih Liang, and De-Cheng Tsai, and Shoei-Yn Lin-Shiau, and Chieh-Fu Chen, and Chi-Tang Ho, and Jen-Kun Lin
January 1981, Virchows Archiv. B, Cell pathology including molecular pathology,
Copied contents to your clipboard!