Adhesive defect in extracellular matrix tenascin-X-null fibroblasts: a possible mechanism of tumor invasion. 2002

Takeharu Minamitani, and Hiroyoshi Ariga, and Ken-Ichi Matsumoto
Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.

Extracellular matrix tenascin-X (TNX)-null mice, generated by disruption of the Tnx gene, display augmented invasion and metastasis of B16-BL6 melanoma tumor cells due to increased activities of matrix metalloproteinase (MMP)-2 and MMP-9. In this study, we investigated cell-matrix and cell-cell adhesions using TNX-null fibroblasts and wild-type fibroblasts. TNX-null fibroblasts exhibited a decreased attachment to fibronectin compared with that of wild-type fibroblasts. B16 melanoma cells were cocultured with wild-type or TNX-null fibroblasts, and the adhesion of B16 melanoma to the fibroblasts was assessed. B16 melanoma cells on wild-type fibroblasts proliferated and spread out in a horizontal direction, whereas those on TNX-null fibroblasts overlapped each other rather than migrating horizontally. These overlapping B16 melanoma cells on TNX-null fibroblasts peeled off faster than those on wild-type fibroblasts. To determine whether the decreased cell-matrix and cell-cell adhesions on TNX-null fibroblasts were due to increased MMP activity, the activities of MMPs in wild-type and TNX-null fibroblasts were compared by gelatinolytic assays. The analysis of MMPs from conditioned media demonstrated that almost the same levels of MMP activities were detected between wild-type and TNX-null fibroblasts. However, contrary to our expectations the activities of MMPs from conditioned media of B16 melanoma cells cocultured on TNX-null fibroblasts were rather reduced than those of B16 melanoma cells cocultured on wild-type. We concluded that the absence of TNX in the extracellular environment might play an important role in enhancement of the detachment of B16 melanoma cells.

UI MeSH Term Description Entries
D008546 Melanoma, Experimental Experimentally induced tumor that produces MELANIN in animals to provide a model for studying human MELANOMA. B16 Melanoma,Melanoma, B16,Melanoma, Cloudman S91,Melanoma, Harding-Passey,Experimental Melanoma,Experimental Melanomas,Harding Passey Melanoma,Melanomas, Experimental,B16 Melanomas,Cloudman S91 Melanoma,Harding-Passey Melanoma,Melanoma, Harding Passey,Melanomas, B16,S91 Melanoma, Cloudman
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D009361 Neoplasm Invasiveness Ability of neoplasms to infiltrate and actively destroy surrounding tissue. Invasiveness, Neoplasm,Neoplasm Invasion,Invasion, Neoplasm
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

Takeharu Minamitani, and Hiroyoshi Ariga, and Ken-Ichi Matsumoto
November 2002, Acta neuropathologica,
Takeharu Minamitani, and Hiroyoshi Ariga, and Ken-Ichi Matsumoto
May 2015, Clinical calcium,
Takeharu Minamitani, and Hiroyoshi Ariga, and Ken-Ichi Matsumoto
March 2023, bioRxiv : the preprint server for biology,
Takeharu Minamitani, and Hiroyoshi Ariga, and Ken-Ichi Matsumoto
August 2023, Advanced materials (Deerfield Beach, Fla.),
Takeharu Minamitani, and Hiroyoshi Ariga, and Ken-Ichi Matsumoto
December 1983, Laboratory investigation; a journal of technical methods and pathology,
Takeharu Minamitani, and Hiroyoshi Ariga, and Ken-Ichi Matsumoto
January 1983, Cancer metastasis reviews,
Takeharu Minamitani, and Hiroyoshi Ariga, and Ken-Ichi Matsumoto
January 1996, Biochemistry and cell biology = Biochimie et biologie cellulaire,
Takeharu Minamitani, and Hiroyoshi Ariga, and Ken-Ichi Matsumoto
January 2007, Archives of dermatological research,
Takeharu Minamitani, and Hiroyoshi Ariga, and Ken-Ichi Matsumoto
March 2019, The Journal of physiology,
Copied contents to your clipboard!