Progesterone induces acrosome reaction in stallion spermatozoa via a protein tyrosine kinase dependent pathway. 2003

R Rathi, and B Colenbrander, and T A E Stout, and M M Bevers, and B M Gadella
Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.

Progesterone (P(4)) is a physiological inducer of the acrosome reaction (AR) in stallion spermatozoa. However, the capacitation-dependent changes that enable progesterone binding, and the nature of the signaling cascade that is triggered by progesterone and results in induction of the AR, are poorly understood. The aim of the current study was, therefore, to investigate the protein kinase dependent signaling cascades involved in progesterone-mediated induction of the AR in stallion spermatozoa. In addition, we aimed to determine whether bicarbonate, an inducer of sperm capacitation, acted via the same pathway as P(4) or whether it otherwise synergized P(4)-mediated induction of the AR. We examined the effect on AR progression of specific inhibitors and stimulators of protein kinase A (PKA), protein kinase C (PKC), protein kinase G (PKG), and protein tyrosine kinase (PTK), in the presence or absence of 15 mM bicarbonate and/or 1 microg/ml progesterone. Progression of the AR was assessed using the Pisum sativum agglutinin conjugated to fluorescein iso thiocyanate (PSA-FITC) staining technique. Bicarbonate specifically activated a PKA-dependent signaling pathway, whereas the effect of P(4) was independent of PKA. Conversely, while P(4)-mediated AR induction was dependent on PTK, the effects of bicarbonate were PTK-independent. Finally, although the AR inducing effects of both P(4) and bicarbonate were sensitive to staurosporin, a potent blocker of PKC activity at moderate (50 nM) concentrations, the effect of P(4) was completely blocked at 50 nM staurosporin, whereas that of bicarbonate was only completely inhibited by much higher concentrations (2 microM) where staurosporin also inhibits PKA activity. In conclusion, P(4)-mediated activation of the AR is dependent on a pathway that includes both PTK and PKC. While the effects of bicarbonate on the AR are mediated via a separate PKA-dependent signaling pathway, P(4) and bicarbonate have synergistic effects on the AR.

UI MeSH Term Description Entries
D008297 Male Males
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001639 Bicarbonates Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity. Bicarbonate,Bicarbonate Ions,Hydrogen Carbonates,Bicarbonate Ion,Carbonic Acid Ions,Hydrogen Carbonate,Carbonate, Hydrogen,Carbonates, Hydrogen,Ion, Bicarbonate,Ions, Bicarbonate,Ions, Carbonic Acid
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

R Rathi, and B Colenbrander, and T A E Stout, and M M Bevers, and B M Gadella
October 1998, Biology of reproduction,
R Rathi, and B Colenbrander, and T A E Stout, and M M Bevers, and B M Gadella
February 2024, Andrology,
R Rathi, and B Colenbrander, and T A E Stout, and M M Bevers, and B M Gadella
November 1997, Trends in endocrinology and metabolism: TEM,
R Rathi, and B Colenbrander, and T A E Stout, and M M Bevers, and B M Gadella
April 1998, International journal of andrology,
R Rathi, and B Colenbrander, and T A E Stout, and M M Bevers, and B M Gadella
April 1996, Molecular human reproduction,
R Rathi, and B Colenbrander, and T A E Stout, and M M Bevers, and B M Gadella
September 2013, Animal reproduction science,
R Rathi, and B Colenbrander, and T A E Stout, and M M Bevers, and B M Gadella
July 2012, Reproduction (Cambridge, England),
R Rathi, and B Colenbrander, and T A E Stout, and M M Bevers, and B M Gadella
October 2012, International journal of andrology,
R Rathi, and B Colenbrander, and T A E Stout, and M M Bevers, and B M Gadella
November 2002, Journal of biochemistry and molecular biology,
R Rathi, and B Colenbrander, and T A E Stout, and M M Bevers, and B M Gadella
June 2020, Andrologia,
Copied contents to your clipboard!