Multiplexed microsphere-based flow cytometric assays. 2002

Kathryn L Kellar, and Marie A Iannone
National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA. klk@cdc.gov

Flow cytometry has become an indispensable tool for clinical diagnostics and basic research. Although primarily designed for cellular analysis, flow cytometers can detect any particles in the lower micron range, including inert microspheres of different sizes, dyed with various fluorochromes. Over the past 20 years, microspheres have been used as calibrators for flow cytometers and also as a solid support for numerous molecular reactions quantitated by flow cytometry. Proteins, oligonucleotides, polysaccharides, lipids, or small peptides have been adsorbed or chemically coupled to the surface of microspheres to capture analytes that are subsequently measured by a fluorochrome-conjugated detection molecule. More recently, assays for similar analytes have been multiplexed, or analyzed in the same assay volume, by performing each reaction on a set of microspheres that are dyed to different fluorescent intensities and, therefore, are spectrally distinct. Some recent applications with fluorescent microspheres have included cytokine quantitation, single nucleotide polymorphism genotyping, phosphorylated protein detection, and characterization of the molecular interactions of nuclear receptors. The speed, sensitivity, and accuracy of flow cytometric detection of multiple binding events measured in the same small volume have the potential to replace many clinical diagnostic and research methods and deliver data on hundreds of analytes simultaneously.

UI MeSH Term Description Entries
D007118 Immunoassay A technique using antibodies for identifying or quantifying a substance. Usually the substance being studied serves as antigen both in antibody production and in measurement of antibody by the test substance. Immunochromatographic Assay,Assay, Immunochromatographic,Assays, Immunochromatographic,Immunoassays,Immunochromatographic Assays
D008863 Microspheres Small uniformly-sized spherical particles, of micrometer dimensions, frequently labeled with radioisotopes or various reagents acting as tags or markers. Latex Beads,Latex Particles,Latex Spheres,Microbeads,Bead, Latex,Beads, Latex,Latex Bead,Latex Particle,Latex Sphere,Microbead,Microsphere,Particle, Latex,Particles, Latex,Sphere, Latex,Spheres, Latex
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D002138 Calibration Determination, by measurement or comparison with a standard, of the correct value of each scale reading on a meter or other measuring instrument; or determination of the settings of a control device that correspond to particular values of voltage, current, frequency or other output. Calibrations
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D005544 Forecasting The prediction or projection of the nature of future problems or existing conditions based upon the extrapolation or interpretation of existing scientific data or by the application of scientific methodology. Futurology,Projections and Predictions,Future,Predictions and Projections
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000327 Adsorption The adhesion of gases, liquids, or dissolved solids onto a surface. It includes adsorptive phenomena of bacteria and viruses onto surfaces as well. ABSORPTION into the substance may follow but not necessarily. Adsorptions
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Kathryn L Kellar, and Marie A Iannone
February 2006, Current protocols in cytometry,
Kathryn L Kellar, and Marie A Iannone
September 2000, Journal of immunological methods,
Kathryn L Kellar, and Marie A Iannone
August 2003, Journal of immunological methods,
Kathryn L Kellar, and Marie A Iannone
May 2006, Cytometry. Part A : the journal of the International Society for Analytical Cytology,
Kathryn L Kellar, and Marie A Iannone
December 2007, Acta pharmacologica Sinica,
Kathryn L Kellar, and Marie A Iannone
May 2007, Analytical chemistry,
Kathryn L Kellar, and Marie A Iannone
January 2004, Methods in cell biology,
Kathryn L Kellar, and Marie A Iannone
January 2015, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!