Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. 2002

Albert Adell, and Pau Celada, and M Teresa Abellán, and Francesc Artigas
Department of Neurochemistry, Institut d'Investigacions Biomèdiques de Barcelona, CSIC (IDIBAPS), Carrer Rosselló 161, 6th floor, E-08036 Barcelona, Spain. aacnqi@iibb.csic.es

There is considerable interest in the regulation of the extracellular compartment of the transmitter serotonin (5-hydroxytryptamine, 5-HT) in the midbrain raphe nuclei because it can control the activity of ascending serotonergic systems and the release of 5-HT in terminal areas of the forebrain. Several intrinsic and extrinsic factors of 5-HT neurons that regulate 5-HT release in the dorsal (DR) and median (MnR) raphe nucleus are reviewed in this article. Despite its high concentration in the extracellular space of the raphe nuclei, the origin of this pool of the transmitter remains to be determined. Regardless of its origin, is has been shown that the release of 5-HT in the rostral raphe nuclei is partly dependent on impulse flow and Ca(2+) ions. The release in the DR and MnR is critically dependent on the activation of 5-HT autoreceptors in these nuclei. Yet, it appears that 5-HT autoreceptors do not tonically inhibit 5-HT release in the raphe nuclei but rather play a role as sensors that respond to an excess of the endogenous transmitter. Both DR and MnR are equally responsive to the reduction of 5-HT release elicited by the local perfusion of 5-HT(1A) receptor agonists. In contrast, the effects of selective 5-HT(1B) receptor agonists are more pronounced in the MnR than in the DR. However, the cellular localization of 5-HT(1B) receptors in the raphe nuclei remains to be established. Furthermore, endogenous noradrenaline and GABA tonically regulate the extracellular concentration of 5-HT although the degree of tonicity appears to depend upon the sleep/wake cycle and the behavioral state of the animal. Glutamate exerts a phasic facilitatory control over the release of 5-HT in the raphe nuclei through ionotropic glutamate receptors. Overall, it appears that the extracellular concentration of 5-HT in the DR and the MnR is tightly controlled by intrinsic serotonergic mechanisms as well as afferent connections.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011903 Raphe Nuclei Collections of small neurons centrally scattered among many fibers from the level of the TROCHLEAR NUCLEUS in the midbrain to the hypoglossal area in the MEDULLA OBLONGATA. Caudal Linear Nucleus of the Raphe,Interfascicular Nucleus,Nucleus Incertus,Rostral Linear Nucleus of Raphe,Rostral Linear Nucleus of the Raphe,Superior Central Nucleus,Central Nucleus, Superior,Incertus, Nucleus,Nuclei, Raphe,Nucleus, Interfascicular,Nucleus, Raphe,Nucleus, Superior Central,Raphe Nucleus
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001519 Behavior The observable response of a man or animal to a situation. Acceptance Process,Acceptance Processes,Behaviors,Process, Acceptance,Processes, Acceptance

Related Publications

Albert Adell, and Pau Celada, and M Teresa Abellán, and Francesc Artigas
May 2020, The European journal of neuroscience,
Albert Adell, and Pau Celada, and M Teresa Abellán, and Francesc Artigas
March 2009, Brain research,
Albert Adell, and Pau Celada, and M Teresa Abellán, and Francesc Artigas
March 1996, Journal of neurochemistry,
Albert Adell, and Pau Celada, and M Teresa Abellán, and Francesc Artigas
September 2014, Anatomical science international,
Albert Adell, and Pau Celada, and M Teresa Abellán, and Francesc Artigas
August 1978, The Journal of comparative neurology,
Albert Adell, and Pau Celada, and M Teresa Abellán, and Francesc Artigas
May 1976, Brain research,
Albert Adell, and Pau Celada, and M Teresa Abellán, and Francesc Artigas
December 1997, Psychopharmacology,
Albert Adell, and Pau Celada, and M Teresa Abellán, and Francesc Artigas
October 1968, The Journal of pharmacology and experimental therapeutics,
Albert Adell, and Pau Celada, and M Teresa Abellán, and Francesc Artigas
July 2012, Proceedings of the National Academy of Sciences of the United States of America,
Albert Adell, and Pau Celada, and M Teresa Abellán, and Francesc Artigas
January 1975, Pharmacology,
Copied contents to your clipboard!