[Free radicals and oxidative stress: targeted ESR measurement of free radicals]. 2002

Toru Egashira, and Fusako Takayama
Department of Pharmacology and Therapeutics, Oita Medical University, 1-1, Idaigaoka, Hasama-machi, Oita 879-5593, Japan.

The detection of free radicals generated within the body may contribute to clarifying the pathophysiological role of free radicals in disease processes. As an appropriate procedure to examine the generation of free radicals in a biological system, electron spin resonance (ESR) has emerged as a powerful tool for detection and identification. A method for determination of oxygen radical scavenging activity using ESR and the spin trapping technique was developed. Oxygen radicals were trapped by 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) or alpha-phenyl-N-t-butylnitrone (PBN), and the DMPO or PBN spin adduct signal was measured quantitatively by an ESR spectrometer. The spin trapping method using ESR has also been reported for not only in vitro and ex vivo measurements but also in vivo measurements. In in vivo ESR, nitroxyl radical is being used as a spin trap well. ESR signal intensities of nitroxyl radical are measured after administration to animals and the signal decay rates of nitroxyl radical have reported to be influenced by various types of oxidative stress. With this method, it is possible to specify the type of radical or the location at which the free radicals are produced. The spin trapping method by in vivo ESR is an effective procedure for giving non-invasive measurements in animals. ESR imaging in the organs of live animals can also be obtained after injection of nitroxyl radicals as an imaging agent using ESR-computed tomography. In vivo ESR imaging has been established as a powerful technique for determining the spatial distribution of free radicals in living organs and tissues.

UI MeSH Term Description Entries
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013113 Spin Labels Molecules which contain an atom or a group of atoms exhibiting an unpaired electron spin that can be detected by electron spin resonance spectroscopy and can be bonded to another molecule. (McGraw-Hill Dictionary of Chemical and Technical Terms, 4th ed) Spin Label,Label, Spin,Labels, Spin
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative
D019097 Spin Trapping A technique for detecting short-lived reactive FREE RADICALS in biological systems by providing a nitrone or nitrose compound for an addition reaction to occur which produces an ELECTRON SPIN RESONANCE SPECTROSCOPY-detectable aminoxyl radical. In spin trapping, the compound trapping the radical is called the spin trap and the addition product of the radical is identified as the spin adduct. (Free Rad Res Comm 1990;9(3-6):163) Spin Trappings,Trapping, Spin,Trappings, Spin

Related Publications

Toru Egashira, and Fusako Takayama
June 2000, The American journal of medicine,
Toru Egashira, and Fusako Takayama
November 1990, Biochemical and biophysical research communications,
Toru Egashira, and Fusako Takayama
September 1989, International journal of pancreatology : official journal of the International Association of Pancreatology,
Toru Egashira, and Fusako Takayama
April 2002, Biochemical Society transactions,
Toru Egashira, and Fusako Takayama
January 1993, Comptes rendus des seances de la Societe de biologie et de ses filiales,
Toru Egashira, and Fusako Takayama
April 2016, Archives of biochemistry and biophysics,
Toru Egashira, and Fusako Takayama
January 2008, Clinical chemistry and laboratory medicine,
Toru Egashira, and Fusako Takayama
December 1995, Dermatology nursing,
Toru Egashira, and Fusako Takayama
June 2000, The American journal of medicine,
Toru Egashira, and Fusako Takayama
August 2008, Journal of the College of Physicians and Surgeons--Pakistan : JCPSP,
Copied contents to your clipboard!