The molecular mechanisms of arsenic-induced cell transformation and apoptosis. 2002

Zigang Dong
The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA. zgdong@hi.umn.edu

Arsenic is a well-documented human carcinogen associated with cancers of the skin, lung, liver, and bladder. Interestingly, arsenic has also been used as an effective chemotherapeutic agent in the treatment of certain human cancers. However, the mechanisms by which arsenic induces proliferation of cancer cells or cancer cell death are not well understood. We found that exposure of JB6 P+ cells to low concentrations of arsenic induces cell transformation, whereas higher concentrations of arsenic induce cell apoptosis. Arsenite induces phosphorylation of extracellular signal-regulated protein kinases (Erks) and c-Jun NH(2)-terminal kinases (JNKs). Arsenite-induced Erk activation was markedly inhibited by introduction of dominant-negative Erk2 into cells, whereas expression of dominant-negative Erk2 did not inhibit JNKs or mitogen-activated protein kinase Erk kinase 1/2. Furthermore, arsenite-induced cell transformation was blocked in cells expressing dominant-negative Erk2. In contrast, overexpression of dominant-negative JNK1 increased cell transformation even though it inhibited arsenite-induced JNK activation. Arsenic also induced AP-1 and nuclear factor kappa B (NF-kappaB) activation. Blocking NF-kappaB activation by dominant-negative inhibitory kappa Balpha inhibited arsenic-induced apoptosis and enhanced arsenic-induced cell transformation. Arsenic induced activation of JNKs at a similar dose range that was effective for induction of apoptosis in JB6 cells. In addition, we found that arsenic did not induce p53-dependent transactivation. Similarly, apoptosis induction was not different between p53 wild-type (p53(+/+)) or p53-deficient (p53(-/-)) cells. In contrast, arsenic-induced apoptosis was almost totally blocked by expression of a dominant-negative mutant of JNK. Taken together with previous findings that p53 mutations are involved in approximately 50% of all human cancers and nearly all chemotherapeutic agents kill cancer cells mainly by apoptotic induction, we suggest that arsenic may be a useful agent for the treatment of cancers with p53 mutations. These results suggest that the activation of Erks is required for arsenic-induced cell transformation, whereas the activation of JNKs and NF-kappaB is involved in arsenic-induced apoptosis of JB6 cells.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001151 Arsenic A shiny gray element with atomic symbol As, atomic number 33, and atomic weight 75. It occurs throughout the universe, mostly in the form of metallic arsenides. Most forms are toxic. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), arsenic and certain arsenic compounds have been listed as known carcinogens. (From Merck Index, 11th ed) Arsenic-75,Arsenic 75
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016158 Genes, p53 Tumor suppressor genes located on the short arm of human chromosome 17 and coding for the phosphoprotein p53. Genes, TP53,TP53 Genes,p53 Genes,Gene, TP53,Gene, p53,TP53 Gene,p53 Gene

Related Publications

Zigang Dong
January 1989, Biological trace element research,
Zigang Dong
December 2011, Journal of cellular physiology,
Zigang Dong
January 1997, Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi,
Zigang Dong
November 2002, British journal of pharmacology,
Zigang Dong
January 1990, Archiv fur Geschwulstforschung,
Zigang Dong
October 2003, Di 1 jun yi da xue xue bao = Academic journal of the first medical college of PLA,
Zigang Dong
November 2010, Chemico-biological interactions,
Zigang Dong
May 2001, Zhonghua zhong liu za zhi [Chinese journal of oncology],
Zigang Dong
September 2019, Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition,
Copied contents to your clipboard!