Axonal transport, tau protein, and neurodegeneration in Alzheimer's disease. 2002

Dick Terwel, and Ilse Dewachter, and Fred Van Leuven
Experimental Genetics Group, K.U.Leuven, Belgium.

The molecular causes and the genetic and environmental modifying factors of the sporadic form of Alzheimer's disease (AD) remain elusive. Extrapolating from the known mutations that cause the rare familial forms and from the typical post-mortem pathological lesions in all AD patients--e.g., amyloid plaques and neurofibrillary tangles (NFTs)-the evident molecular candidates are amyloid precursor protein (APP), presenilin, and tau protein. To include ApoE4 as the only certain genetic modifier known leaves us to face the challenge of implementing these very different molecules into an evident pathological partnership. In more than one respect, the proposition of disturbed axonal transport appears attractive with more details becoming available on APP processing and microtubular transport and also of the pathology in the model systems--e.g., transgenic mice expressing APP or protein tau. Conversely, the resistance of APP-transgenic mice with full-blown amyloid pathology to also develop tau-related neurofibrillar pathology is a major challenge for this hypothesis. From the most relevant data discussed here, we conclude that the postulate of disturbed axonal transport as the primary event in AD is difficult to defend. On the other hand, failing axonal transport appears to be of major importance in the later stages in AD, by further compromising tau protein, APP metabolism, and synaptic functioning. Protein tau may thus be the central "executer" in the chain of events leading from amyloid neurotoxicity to tau hyperphosphorylation, microtubular destabilization, disturbed axonal transport, and synaptic failure to neurodegeneration. In order to identify normal physiological processes and novel pathological targets, definition is needed--in molecular detail--of the complex mechanisms involved.

UI MeSH Term Description Entries
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071679 Glycogen Synthase Kinase 3 beta A glycogen synthase kinase-3 type enzyme that functions in ENERGY METABOLISM; EMBRYONIC DEVELOPMENT; and NEUROGENESIS. It is also involved in PROTEIN BIOSYNTHESIS and regulates cell growth and proliferation as a component of the WNT SIGNALING PATHWAY and other signaling pathways. Certain polymorphisms in the GSK3B gene have been associated with PARKINSON DISEASE; ALZHEIMER DISEASE; and BIPOLAR DISORDER. GSK-3beta,GSK3B Protein,GSK3beta,GSK 3beta
D000544 Alzheimer Disease A degenerative disease of the BRAIN characterized by the insidious onset of DEMENTIA. Impairment of MEMORY, judgment, attention span, and problem solving skills are followed by severe APRAXIAS and a global loss of cognitive abilities. The condition primarily occurs after age 60, and is marked pathologically by severe cortical atrophy and the triad of SENILE PLAQUES; NEUROFIBRILLARY TANGLES; and NEUROPIL THREADS. (From Adams et al., Principles of Neurology, 6th ed, pp1049-57) Acute Confusional Senile Dementia,Alzheimer's Diseases,Dementia, Alzheimer Type,Dementia, Senile,Presenile Alzheimer Dementia,Senile Dementia, Alzheimer Type,Alzheimer Dementia,Alzheimer Disease, Early Onset,Alzheimer Disease, Late Onset,Alzheimer Sclerosis,Alzheimer Syndrome,Alzheimer Type Senile Dementia,Alzheimer's Disease,Alzheimer's Disease, Focal Onset,Alzheimer-Type Dementia (ATD),Dementia, Presenile,Dementia, Primary Senile Degenerative,Early Onset Alzheimer Disease,Familial Alzheimer Disease (FAD),Focal Onset Alzheimer's Disease,Late Onset Alzheimer Disease,Primary Senile Degenerative Dementia,Senile Dementia, Acute Confusional,Alzheimer Dementias,Alzheimer Disease, Familial (FAD),Alzheimer Diseases,Alzheimer Type Dementia,Alzheimer Type Dementia (ATD),Alzheimers Diseases,Dementia, Alzheimer,Dementia, Alzheimer-Type (ATD),Familial Alzheimer Diseases (FAD),Presenile Dementia,Sclerosis, Alzheimer,Senile Dementia
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D001370 Axonal Transport The directed transport of ORGANELLES and molecules along nerve cell AXONS. Transport can be anterograde (from the cell body) or retrograde (toward the cell body). (Alberts et al., Molecular Biology of the Cell, 3d ed, pG3) Axoplasmic Flow,Axoplasmic Transport,Axoplasmic Streaming,Axonal Transports,Axoplasmic Flows,Axoplasmic Transports,Streaming, Axoplasmic,Transport, Axonal,Transport, Axoplasmic,Transports, Axonal,Transports, Axoplasmic
D016564 Amyloid beta-Protein Precursor A single-pass type I membrane protein. It is cleaved by AMYLOID PRECURSOR PROTEIN SECRETASES to produce peptides of varying amino acid lengths. A 39-42 amino acid peptide, AMYLOID BETA-PEPTIDES is a principal component of the extracellular amyloid in SENILE PLAQUES. Amyloid A4 Protein Precursor,Amyloid Protein Precursor,beta-Amyloid Protein Precursor,Amyloid beta Precursor Protein,Protease Nexin 2,Protease Nexin II,Amyloid beta Protein Precursor,Nexin 2, Protease,Nexin II, Protease,beta Amyloid Protein Precursor,beta-Protein Precursor, Amyloid

Related Publications

Dick Terwel, and Ilse Dewachter, and Fred Van Leuven
December 2010, Current Alzheimer research,
Dick Terwel, and Ilse Dewachter, and Fred Van Leuven
January 2019, Neuron,
Dick Terwel, and Ilse Dewachter, and Fred Van Leuven
September 2018, Neuron,
Dick Terwel, and Ilse Dewachter, and Fred Van Leuven
January 2006, Annual review of biochemistry,
Dick Terwel, and Ilse Dewachter, and Fred Van Leuven
September 2007, Nature reviews. Neuroscience,
Dick Terwel, and Ilse Dewachter, and Fred Van Leuven
January 2015, Molecular neurobiology,
Dick Terwel, and Ilse Dewachter, and Fred Van Leuven
January 2023, Frontiers in neuroscience,
Dick Terwel, and Ilse Dewachter, and Fred Van Leuven
April 2007, Trends in molecular medicine,
Copied contents to your clipboard!