Differential peristaltic motor effects of prostanoid (DP, EP, IP, TP) and leukotriene receptor agonists in the guinea-pig isolated small intestine. 2002

Anaid Shahbazian, and Akos Heinemann, and Bernhard A Peskar, and Peter Holzer
Department of Experimental and Clinical Pharmacology, University of Graz, A-8010 Graz, Austria.

1. Since the role of prostanoid receptors in intestinal peristalsis is largely unknown, the peristaltic motor effects of some prostaglandin (DP, EP, IP), thromboxane (TP) and leukotriene (LT) receptor agonists and antagonists were investigated. 2. Propulsive peristalsis in fluid-perfused segments from the guinea-pig small intestine was triggered by a rise of the intraluminal pressure and recorded via the intraluminal pressure changes associated with the peristaltic waves. Alterations of distension sensitivity were deduced from alterations of the peristaltic pressure threshold and modifications of peristaltic performance were reflected by modifications of the amplitude, maximal acceleration and residual baseline pressure of the peristaltic waves. 3. Four categories of peristaltic motor effects became apparent: a decrease in distension sensitivity and peristaltic performance as induced by the EP1/EP3 receptor agonist sulprostone and the TP receptor agonist U-46619 (1-1000 nM); a decrease in distension sensitivity without a major change in peristaltic performance as induced by PGD(2) (3-300 nM) and LTD(4) (10-100 nM); a decrease in peristaltic performance without a major change in distension sensitivity as induced by PGE(1), PGE(2) (1-1000 nM) and the EP1/IP receptor agonist iloprost (1-100 nM); and a decrease in peristaltic performance associated with an increase in distension sensitivity as induced by the EP2 receptor agonist butaprost (1-1000 nM). The DP receptor agonist BW-245 C (1-1000 nM) was without effect. 4. The peristaltic motor action of sulprostone remained unchanged by the EP1 receptor antagonist SC-51089 (1 micro M) and the DP/EP1/EP2 receptor antagonist AH-6809 (30 micro M), whereas that of U-46619 and LTD(4) was prevented by the TP receptor antagonist SQ-29548 (10 micro M) and the cysteinyl-leukotriene(1) (cysLT(1)) receptor antagonist tomelukast (10 micro M), respectively. 5. These observations and their pharmacological analysis indicate that activation of EP2, EP3, IP, TP and cysLT(1) receptors, but not DP receptors, modulate intestinal peristalsis in a receptor-selective manner, whereas activation of EP1 seems to be without influence on propulsive peristalsis. In a wider perspective it appears as if the effect of prostanoid receptor agonists to induce diarrhoea is due to their prosecretory but not peristaltic motor action.

UI MeSH Term Description Entries
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D008297 Male Males
D010077 Oxazepines
D010528 Peristalsis A movement, caused by sequential muscle contraction, that pushes the contents of the intestines or other tubular organs in one direction. Peristalses
D011454 Prostaglandins A (13E,15S)-15-Hydroxy-9-oxoprosta-10,13-dien-1-oic acid (PGA(1)); (5Z,13E,15S)-15-hydroxy-9-oxoprosta-5,10,13-trien-1-oic acid (PGA(2)); (5Z,13E,15S,17Z)-15-hydroxy-9-oxoprosta-5,10,13,17-tetraen-1-oic acid (PGA(3)). A group of naturally occurring secondary prostaglandins derived from PGE; PGA(1) and PGA(2) as well as their 19-hydroxy derivatives are found in many organs and tissues. PGA
D011982 Receptors, Prostaglandin Cell surface receptors that bind prostaglandins with high affinity and trigger intracellular changes which influence the behavior of cells. Prostaglandin receptor subtypes have been tentatively named according to their relative affinities for the endogenous prostaglandins. They include those which prefer prostaglandin D2 (DP receptors), prostaglandin E2 (EP1, EP2, and EP3 receptors), prostaglandin F2-alpha (FP receptors), and prostacyclin (IP receptors). Prostaglandin Receptors,Prostaglandin Receptor,Receptor, Prostaglandin,Receptors, Prostaglandins,Prostaglandins Receptors
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005231 Fatty Acids, Unsaturated FATTY ACIDS in which the carbon chain contains one or more double or triple carbon-carbon bonds. Fatty Acids, Polyunsaturated,Polyunsaturated Fatty Acid,Unsaturated Fatty Acid,Polyunsaturated Fatty Acids,Acid, Polyunsaturated Fatty,Acid, Unsaturated Fatty,Acids, Polyunsaturated Fatty,Acids, Unsaturated Fatty,Fatty Acid, Polyunsaturated,Fatty Acid, Unsaturated,Unsaturated Fatty Acids
D005260 Female Females
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea

Related Publications

Anaid Shahbazian, and Akos Heinemann, and Bernhard A Peskar, and Peter Holzer
April 2000, Neurogastroenterology and motility,
Anaid Shahbazian, and Akos Heinemann, and Bernhard A Peskar, and Peter Holzer
August 1998, Gastroenterology,
Anaid Shahbazian, and Akos Heinemann, and Bernhard A Peskar, and Peter Holzer
January 2011, British journal of pharmacology,
Anaid Shahbazian, and Akos Heinemann, and Bernhard A Peskar, and Peter Holzer
September 1992, British journal of pharmacology,
Anaid Shahbazian, and Akos Heinemann, and Bernhard A Peskar, and Peter Holzer
August 1981, Neuroscience letters,
Anaid Shahbazian, and Akos Heinemann, and Bernhard A Peskar, and Peter Holzer
January 1958, Helvetica physiologica et pharmacologica acta,
Anaid Shahbazian, and Akos Heinemann, and Bernhard A Peskar, and Peter Holzer
January 1998, Neuropharmacology,
Anaid Shahbazian, and Akos Heinemann, and Bernhard A Peskar, and Peter Holzer
January 1992, The Clinical investigator,
Anaid Shahbazian, and Akos Heinemann, and Bernhard A Peskar, and Peter Holzer
May 2009, Investigative ophthalmology & visual science,
Anaid Shahbazian, and Akos Heinemann, and Bernhard A Peskar, and Peter Holzer
September 1997, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!