Derivation and potential applications of human embryonic stem cells. 2002

Lior Gepstein
Cardiovascular Research Laboratory, the Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, and Rambam Medical Center, Haifa, Israel. mdlior@tx.technion.ac.il

Embryonic stem cells are pluripotent cell lines that are derived from the blastocyst-stage early mammalian embryo. These unique cells are characterized by their capacity for prolonged undifferentiated proliferation in culture while maintaining the potential to differentiate into derivatives of all three germ layers. During in vitro differentiation, embryonic stem cells can develop into specialized somatic cells, including cardiomyocytes, and have been shown to recapitulate many processes of early embryonic development. The present review describes the derivation and unique properties of the recently described human embryonic stem cells as well as the properties of cardiomyocytes derived using this unique differentiating system. The possible applications of this system in several cardiac research areas, including developmental biology, functional genomics, pharmacological testing, cell therapy, and tissue engineering, are discussed. Because of their combined ability to proliferate indefinitely and to differentiate to mature tissue types, human embryonic stem cells can potentially provide an unlimited supply of cardiomyocytes for cell therapy procedures aiming to regenerate functional myocardium. However, many obstacles must still be overcome on the way to successful clinical utilization of these cells.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006084 Graft Rejection An immune response with both cellular and humoral components, directed against an allogeneic transplant, whose tissue antigens are not compatible with those of the recipient. Transplant Rejection,Rejection, Transplant,Transplantation Rejection,Graft Rejections,Rejection, Graft,Rejection, Transplantation,Rejections, Graft,Rejections, Transplant,Rejections, Transplantation,Transplant Rejections,Transplantation Rejections
D006331 Heart Diseases Pathological conditions involving the HEART including its structural and functional abnormalities. Cardiac Disorders,Heart Disorders,Cardiac Diseases,Cardiac Disease,Cardiac Disorder,Heart Disease,Heart Disorder
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell

Related Publications

Lior Gepstein
September 2004, Reproduction (Cambridge, England),
Lior Gepstein
January 2001, Reproduction, fertility, and development,
Lior Gepstein
June 2007, Journal of the Medical Association of Thailand = Chotmaihet thangphaet,
Lior Gepstein
January 2017, Methods in molecular biology (Clifton, N.J.),
Lior Gepstein
January 2014, Methods in molecular biology (Clifton, N.J.),
Lior Gepstein
March 2014, Proceedings of the National Academy of Sciences of the United States of America,
Lior Gepstein
January 2006, Methods in molecular biology (Clifton, N.J.),
Lior Gepstein
January 2013, Methods in molecular biology (Clifton, N.J.),
Lior Gepstein
January 2011, Methods in molecular biology (Clifton, N.J.),
Lior Gepstein
November 2020, Nature reviews. Molecular cell biology,
Copied contents to your clipboard!