Genomic structure and promoter analysis of the mouse neutral ceramidase gene. 2002

Nozomu Okino, and Kaoru Mori, and Makoto Ito
Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, 812-8581, Fukuoka, Japan.

We report here the molecular cloning of the mouse neutral ceramidase gene and its promoter analysis. The gene, composed of 27 exons ranging in size from 40 to 292 bp, spans more than 70 kb. Analysis of the 5(')-flanking region of the ceramidase genes revealed that the first exon of the gene of mouse liver was exactly the same as that of mouse kidney and Swiss 3T3 fibroblasts but completely different from that of mouse brain. The putative promoter regions of liver and brain ceramidase genes contained several well-characterized promoter elements such as GATA-2, C/EBP, and HNF3beta but lacked TATA and CAAT boxes, a typical feature of a housekeeping gene, although the expression is regulated in a tissue-specific manner. Interestingly, a GC box was exclusively found in the putative promoter of mouse liver whereas potential AP1 and AP4 binding sites were present in that of mouse brain. By a luciferase reporter gene assay, it was shown that the GC-rich region, which exists just upstream of the first exon, conferred the promoter activity in Swiss 3T3 cells.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008156 Luciferases Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates. Luciferase
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000581 Amidohydrolases Any member of the class of enzymes that catalyze the cleavage of amide bonds and result in the addition of water to the resulting molecules. Amidases,Amidohydrolase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Nozomu Okino, and Kaoru Mori, and Makoto Ito
May 2000, DNA and cell biology,
Nozomu Okino, and Kaoru Mori, and Makoto Ito
May 2000, FEBS letters,
Nozomu Okino, and Kaoru Mori, and Makoto Ito
March 2004, Gene,
Nozomu Okino, and Kaoru Mori, and Makoto Ito
September 1994, Proceedings of the National Academy of Sciences of the United States of America,
Nozomu Okino, and Kaoru Mori, and Makoto Ito
November 1997, Genomics,
Nozomu Okino, and Kaoru Mori, and Makoto Ito
July 2000, Biochimica et biophysica acta,
Nozomu Okino, and Kaoru Mori, and Makoto Ito
February 2002, IUBMB life,
Nozomu Okino, and Kaoru Mori, and Makoto Ito
February 1996, The Journal of biological chemistry,
Nozomu Okino, and Kaoru Mori, and Makoto Ito
August 2000, Biochemical and biophysical research communications,
Copied contents to your clipboard!