Distribution of mu-opioid receptors in rat visceral premotor neurons. 2002

S A Aicher, and J L Mitchell, and D Mendelowitz
Neurological Sciences Institute, Oregon Health & Science University, 505 NW 185th Avenue, 97006, Beaverton, OR 97006, USA. aichers@ohsu.edu

Agonists of the mu-opioid receptor (MOR) can modulate the activity of visceral premotor neurons, including cardiac premotor neurons. Neurons in brainstem regions containing these premotor neurons also contain dense concentrations of the MOR1. This study examined the distribution of MOR1 within two populations of visceral premotor neurons: one located in the dorsal motor nucleus of the vagus and the other in the nucleus ambiguus. Visceral premotor neurons contained the retrograde tracer Fluoro-Gold following injections of the tracer into the pericardiac region of the thoracic cavity. MOR1 was localized using immunogold detection of an anti-peptide antibody. Visceral premotor neurons in both regions contained MOR1 at somatic and dendritic sites, although smaller dendrites were less likely to contain the receptor than larger dendrites, suggesting there may be selective trafficking of MOR1 within these neurons. MOR1 labeling in nucleus ambiguus neurons was more likely to be localized to plasma membrane sites, suggesting that ambiguus neurons may be more responsive to opioid ligands than neurons in the dorsal motor nucleus of the vagus. In addition, many of the dendrites of visceral premotor neurons were in direct apposition to other dendrites. MOR1 was often detected at these dendro-dendritic appositions that may be gap junctions. Together these findings indicate that the activity of individual visceral premotor neurons, as well as the coupling between neurons, may be regulated by ligands of the MOR.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D005260 Female Females
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic

Related Publications

S A Aicher, and J L Mitchell, and D Mendelowitz
January 2010, Journal of neurophysiology,
S A Aicher, and J L Mitchell, and D Mendelowitz
April 2001, The Journal of comparative neurology,
S A Aicher, and J L Mitchell, and D Mendelowitz
January 1997, The European journal of neuroscience,
S A Aicher, and J L Mitchell, and D Mendelowitz
July 2005, Neuroscience letters,
S A Aicher, and J L Mitchell, and D Mendelowitz
July 2002, Experimental neurology,
S A Aicher, and J L Mitchell, and D Mendelowitz
January 2004, Neuroscience,
S A Aicher, and J L Mitchell, and D Mendelowitz
December 1990, Brain research,
S A Aicher, and J L Mitchell, and D Mendelowitz
May 2021, Addiction biology,
S A Aicher, and J L Mitchell, and D Mendelowitz
March 1999, Brain research,
Copied contents to your clipboard!