41.8 degrees C whole body hyperthermia as an adjunct to chemotherapy induces prolonged T cell activation in patients with various malignant diseases. 2002

Djordje Atanackovic, and Axel Nierhaus, and Michael Neumeier, and Dieter K Hossfeld, and Susanna Hegewisch-Becker
Department of Oncology and Hematology, University Clinic Eppendorf, Hamburg, Germany. atanackd@mskcc.org

Whole body hyperthermia (WBH) has been used as an adjunct to radio-/chemotherapy in patients with various malignant diseases. Although clear evidence is still missing, it has been hypothesized that an activation of the immune system might contribute to the therapeutic effect of WBH. To examine whether a treatment with 60-minute 41.8 degrees C WBH as an adjunct to chemotherapy (WBH-CT) induces an activation of T cells, blood samples were collected at numerous time points before and up to 48 h post-treatment. The aim of this study was to examine the effect of WBH-CT on the expression of a broad range of activation markers on peripheral blood lymphocytes (PBL), on serum cytokines and intracellular cytokine levels in T cells, and the capacity of these cells to proliferate. Immediately after 41.8 degrees C WBH-CT treatment, a drastic increase in peripheral natural killer (NK) cells ( P<0.05) and CD56+ cytotoxic T lymphocytes (CTL; P<0.01) in the patients' peripheral blood was observed. At 5 h post-treatment, the percentages of both effector cell types had returned to baseline levels. This transient phenomenon was accompanied by a short period of reduced T cell activity, indicated by diminished serum levels of soluble interleukin-2 receptors (sIL-2R) at 3 h post-WBH-CT ( P<0.05) and decreased lymphocytic proliferation at the same point in time. This first phase was followed by a marked but short-lived increase in the patients' serum levels of interleukin-6 (IL-6; P<0.01) during the first 5 h following treatment, with a subsequent decrease to baseline levels at 24 h and significantly increased serum levels of tumor necrosis factor-alpha (TNF-alpha) at 0 h ( P<0.01), 3 h ( P<0.05), 5 h ( P<0.05) and 24 h ( P<0.01) post-WBH-CT. The third phase of the immunological consequences of WBH-CT consisted of an increase in the percentage of peripheral cytotoxic T lymphocytes (CTL) expressing CD56, reaching a maximum at 48 h post-WBH ( P<0.01). Furthermore, the percentage of CD4+ T cells expressing the T cell activation marker CD69 increased nearly two-fold over time, reaching its maximum at 48 h ( P<0.05). As an additional marker for T cell activation, serum levels of sIL-2R increased markedly ( P<0.01), reaching maximum levels at the same point in time. Elevated intracellular concentrations of interferon-gamma (IFN-gamma) and/or TNF-alpha in CD8+ T cells were found in 4 out of 5 patients at 24 h post-WBH-CT. Since similar changes were not observed in patients receiving chemotherapy alone, this is the first study to provide evidence for prolonged WBH-CT-induced activation of human T cells.

UI MeSH Term Description Entries
D006979 Hyperthermia, Induced Abnormally high temperature intentionally induced in living things regionally or whole body. It is most often induced by radiation (heat waves, infra-red), ultrasound, or drugs. Fever Therapy,Hyperthermia, Local,Hyperthermia, Therapeutic,Thermotherapy,Induced Hyperthermia,Therapeutic Hyperthermia,Therapy, Fever,Local Hyperthermia
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D003131 Combined Modality Therapy The treatment of a disease or condition by several different means simultaneously or sequentially. Chemoimmunotherapy, RADIOIMMUNOTHERAPY, chemoradiotherapy, cryochemotherapy, and SALVAGE THERAPY are seen most frequently, but their combinations with each other and surgery are also used. Multimodal Treatment,Therapy, Combined Modality,Combined Modality Therapies,Modality Therapies, Combined,Modality Therapy, Combined,Multimodal Treatments,Therapies, Combined Modality,Treatment, Multimodal,Treatments, Multimodal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D013602 T-Lymphocytes, Cytotoxic Immunized T-lymphocytes which can directly destroy appropriate target cells. These cytotoxic lymphocytes may be generated in vitro in mixed lymphocyte cultures (MLC), in vivo during a graft-versus-host (GVH) reaction, or after immunization with an allograft, tumor cell or virally transformed or chemically modified target cell. The lytic phenomenon is sometimes referred to as cell-mediated lympholysis (CML). These CD8-positive cells are distinct from NATURAL KILLER CELLS and NATURAL KILLER T-CELLS. There are two effector phenotypes: TC1 and TC2. Cell-Mediated Lympholytic Cells,Cytotoxic T Cells,Cytotoxic T Lymphocyte,Cytotoxic T-Lymphocytes,TC1 Cell,TC1 Cells,TC2 Cell,TC2 Cells,Cell Mediated Lympholytic Cells,Cell, Cell-Mediated Lympholytic,Cell, TC1,Cell, TC2,Cell-Mediated Lympholytic Cell,Cytotoxic T Cell,Cytotoxic T Lymphocytes,Cytotoxic T-Lymphocyte,Lymphocyte, Cytotoxic T,Lympholytic Cell, Cell-Mediated,Lympholytic Cells, Cell-Mediated,T Cell, Cytotoxic,T Lymphocyte, Cytotoxic,T Lymphocytes, Cytotoxic,T-Lymphocyte, Cytotoxic
D015703 Antigens, CD Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation. CD Antigen,Cluster of Differentiation Antigen,Cluster of Differentiation Marker,Differentiation Antigens, Leukocyte, Human,Leukocyte Differentiation Antigens, Human,Cluster of Differentiation Antigens,Cluster of Differentiation Markers,Antigen Cluster, Differentiation,Antigen, CD,CD Antigens,Differentiation Antigen Cluster,Differentiation Marker Cluster,Marker Cluster, Differentiation

Related Publications

Djordje Atanackovic, and Axel Nierhaus, and Michael Neumeier, and Dieter K Hossfeld, and Susanna Hegewisch-Becker
May 1997, Cancer letters,
Djordje Atanackovic, and Axel Nierhaus, and Michael Neumeier, and Dieter K Hossfeld, and Susanna Hegewisch-Becker
November 1995, Cancer letters,
Djordje Atanackovic, and Axel Nierhaus, and Michael Neumeier, and Dieter K Hossfeld, and Susanna Hegewisch-Becker
May 1993, Journal of the National Cancer Institute,
Djordje Atanackovic, and Axel Nierhaus, and Michael Neumeier, and Dieter K Hossfeld, and Susanna Hegewisch-Becker
March 2003, Lung cancer (Amsterdam, Netherlands),
Djordje Atanackovic, and Axel Nierhaus, and Michael Neumeier, and Dieter K Hossfeld, and Susanna Hegewisch-Becker
October 1994, Cancer research,
Djordje Atanackovic, and Axel Nierhaus, and Michael Neumeier, and Dieter K Hossfeld, and Susanna Hegewisch-Becker
January 1999, Journal of immunotherapy (Hagerstown, Md. : 1997),
Djordje Atanackovic, and Axel Nierhaus, and Michael Neumeier, and Dieter K Hossfeld, and Susanna Hegewisch-Becker
January 1997, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group,
Djordje Atanackovic, and Axel Nierhaus, and Michael Neumeier, and Dieter K Hossfeld, and Susanna Hegewisch-Becker
September 1993, Journal of clinical oncology : official journal of the American Society of Clinical Oncology,
Djordje Atanackovic, and Axel Nierhaus, and Michael Neumeier, and Dieter K Hossfeld, and Susanna Hegewisch-Becker
January 1997, Journal of clinical oncology : official journal of the American Society of Clinical Oncology,
Djordje Atanackovic, and Axel Nierhaus, and Michael Neumeier, and Dieter K Hossfeld, and Susanna Hegewisch-Becker
May 1996, European journal of cancer (Oxford, England : 1990),
Copied contents to your clipboard!