Peroxisome proliferator-activated receptors and the regulation of mammalian lipid metabolism. 2002

S A Smith
Metabolic Scientific Strategy, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK. stephen_a_smith@gsk.com

Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of ligand-activated nuclear transcription factors. Three PPAR subtypes, PPARalpha, PPARdelta (PPARbeta) and PPARgamma, have been described in mammals. The tissue distribution of PPARs is heterogeneous: PPARalpha is highly expressed in liver and skeletal muscle, PPARgamma is preferentially expressed in adipose tissues, and PPARdelta is expressed in most cell types with relative abundance. Unlike most receptors, PPARs show low ligand specificity, being activated by many long-chain saturated and unsaturated fatty acids, or by eicosanoids. PPARs are transcriptionally active as heterodimeric complexes with the retinoid X receptor and bind to specific recognition sequences in the regulatory region of target genes. Many PPAR-regulated genes encode proteins that regulate fatty acid oxidation and storage. Elucidation of the biological functions of PPARs has been aided by the development of PPAR-null mice and the identification of humans bearing PPAR mutations, together with the discovery of synthetic small-molecule ligands that selectively activate individual PPAR subtypes. Using these genetic and pharmacological approaches, it has been shown that PPARalpha predominantly regulates pathways of fatty acid oxidation, whereas PPARgamma modifies fatty acid synthesis and storage in adipose tissues. By reducing systemic fatty acid availability, thiazolidinedione PPARgamma activators regulate glucose metabolism and are now used clinically in the treatment of Type II diabetes. In summary, PPARs play a central role in the mechanisms that balance fatty acid oxidation and storage in the face of fluctuations of dietary fat intake and energy expenditure.

UI MeSH Term Description Entries
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D050356 Lipid Metabolism Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS. Metabolism, Lipid
D018160 Receptors, Cytoplasmic and Nuclear Intracellular receptors that can be found in the cytoplasm or in the nucleus. They bind to extracellular signaling molecules that migrate through or are transported across the CELL MEMBRANE. Many members of this class of receptors occur in the cytoplasm and are transported to the CELL NUCLEUS upon ligand-binding where they signal via DNA-binding and transcription regulation. Also included in this category are receptors found on INTRACELLULAR MEMBRANES that act via mechanisms similar to CELL SURFACE RECEPTORS. Cytoplasmic Receptor,Cytoplasmic and Nuclear Receptors,Cytosolic and Nuclear Receptors,Hormone Receptors, Cytoplasmic,Hormone Receptors, Nuclear,Nuclear Hormone Receptor,Nuclear Receptor,Nuclear and Cytoplasmic Receptors,Cytoplasmic Hormone Receptors,Cytoplasmic Receptors,Cytosol and Nuclear Receptors,Intracellular Membrane Receptors,Nuclear Hormone Receptors,Nuclear Receptors,Receptors, Cytoplasmic,Receptors, Cytosol and Nuclear,Receptors, Cytosolic and Nuclear,Receptors, Intracellular Membrane,Receptors, Nuclear,Receptors, Nuclear and Cytoplasmic,Hormone Receptor, Nuclear,Membrane Receptors, Intracellular,Receptor, Cytoplasmic,Receptor, Nuclear,Receptor, Nuclear Hormone,Receptors, Cytoplasmic Hormone,Receptors, Nuclear Hormone
Copied contents to your clipboard!