Group I introns and RNA folding. 2002

E Westhof
Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue R. Descartes, F-67084 Strasbourg, France. E.Westhof@ibmc.u-strasbg.fr

Before the discovery of catalytic RNA, tRNA molecules were the most studied RNA molecules for understanding RNA folding. Afterwards, group I introns, because of their stability and the fact that structural folding could be monitored by following their catalytic activity, became the molecule of choice for studying RNA architecture and folding. A major advantage of group I introns for studying the catalytic activity of RNA molecules is that catalytic activity is triggered by the addition of external guanosine cofactors. The self-splicing activity can therefore be precisely controlled. Using group I introns, several RNA motifs central to RNA-RNA self-assembly and folding were discovered. The analysis of the recent X-ray structures of the rRNA subunits indicates that several motifs present in the ribosome occur also in various group I introns.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012326 RNA Splicing The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm. RNA, Messenger, Splicing,Splicing, RNA,RNA Splicings,Splicings, RNA
D016337 RNA, Catalytic RNA that has catalytic activity. The catalytic RNA sequence folds to form a complex surface that can function as an enzyme in reactions with itself and other molecules. It may function even in the absence of protein. There are numerous examples of RNA species that are acted upon by catalytic RNA, however the scope of this enzyme class is not limited to a particular type of substrate. Catalytic RNA,Ribozyme,Ribozymes

Related Publications

E Westhof
March 2014, Mobile DNA,
E Westhof
January 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
E Westhof
July 2007, Biological chemistry,
E Westhof
June 2008, Molecular biology reports,
E Westhof
December 1991, Proceedings of the National Academy of Sciences of the United States of America,
E Westhof
October 1994, Proceedings of the National Academy of Sciences of the United States of America,
E Westhof
June 2005, Current opinion in structural biology,
E Westhof
January 1990, Annual review of biochemistry,
Copied contents to your clipboard!