The Purkinje rod-cone shift as a function of luminance and retinal eccentricity. 2002

Stuart Anstis
Department of Psychology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0109, USA. santis@ucsd.edu

In the Purkinje shift, the dark adapted eye becomes more sensitive to blue than to red as the retinal rods take over from the cones. A striking demonstration of the Purkinje shift, suitable for classroom use, is described in which a small change in viewing distance can reverse the perceived direction of a rotating annulus. We measured this shift with a minimum-motion stimulus (Anstis & Cavanagh, Color Vision: Physiology & Psychophysics, Academic Press, London, 1983) that converts apparent lightness of blue versus red into apparent motion. We filled an iso-eccentric annulus with radial red/blue sectors, and arranged that if the blue sectors looked darker (lighter) than the red sectors, the annulus would appear to rotate to the left (right). At equiluminance the motion appeared to vanish. Our observers established these motion null points while viewing the pattern at various retinal eccentricities through various neutral density filters. RESULTS The luminous efficiency of blue (relative to red) increased linearly with eccentricity at all adaptation levels, and the more the dark-adaptation, the steeper the slope of the eccentricity function. Thus blue sensitivity was a linear function of eccentricity and an exponential function of filter factor. Blue sensitivity increased linearly with eccentricity, and each additional log(10) unit of dark adaptation changed the slope threefold.

UI MeSH Term Description Entries
D008029 Lighting The illumination of an environment and the arrangement of lights to achieve an effect or optimal visibility. Its application is in domestic or in public settings and in medical and non-medical environments. Illumination
D008297 Male Males
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D003118 Color Perception Mental processing of chromatic signals (COLOR VISION) from the eye by the VISUAL CORTEX where they are converted into symbolic representations. Color perception involves numerous neurons, and is influenced not only by the distribution of wavelengths from the viewed object, but also by its background color and brightness contrast at its boundary. Color Perceptions,Perception, Color,Perceptions, Color
D003623 Dark Adaptation Adjustment of the eyes under conditions of low light. The sensitivity of the eye to light is increased during dark adaptation. Scotopic Adaptation,Adaptation, Dark,Adaptation, Scotopic
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D012684 Sensory Thresholds The minimum amount of stimulus energy necessary to elicit a sensory response. Sensory Threshold,Threshold, Sensory,Thresholds, Sensory
D017948 Retinal Rod Photoreceptor Cells Photosensitive afferent neurons located in the peripheral retina, with their density increases radially away from the FOVEA CENTRALIS. Being much more sensitive to light than the RETINAL CONE CELLS, the rod cells are responsible for twilight vision (at scotopic intensities) as well as peripheral vision, but provide no color discrimination. Photoreceptors, Rod,Retinal Rod Cells,Rod Photoreceptors,Rods (Retina),Retinal Rod,Retinal Rod Cell,Retinal Rod Photoreceptor,Retinal Rod Photoreceptors,Rod Photoreceptor Cells,Cell, Retinal Rod,Cell, Rod Photoreceptor,Cells, Retinal Rod,Cells, Rod Photoreceptor,Photoreceptor Cell, Rod,Photoreceptor Cells, Rod,Photoreceptor, Retinal Rod,Photoreceptor, Rod,Photoreceptors, Retinal Rod,Retinal Rods,Rod (Retina),Rod Cell, Retinal,Rod Cells, Retinal,Rod Photoreceptor,Rod Photoreceptor Cell,Rod Photoreceptor, Retinal,Rod Photoreceptors, Retinal,Rod, Retinal,Rods, Retinal

Related Publications

Stuart Anstis
August 1976, Nature,
Stuart Anstis
November 1984, Perception & psychophysics,
Stuart Anstis
July 2014, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie,
Stuart Anstis
January 1979, Vision research,
Stuart Anstis
February 1957, Nature,
Stuart Anstis
May 1989, Archives of ophthalmology (Chicago, Ill. : 1960),
Stuart Anstis
April 1986, Archives of ophthalmology (Chicago, Ill. : 1960),
Stuart Anstis
December 2001, Optometry and vision science : official publication of the American Academy of Optometry,
Copied contents to your clipboard!