Pro-nociceptin/orphanin FQ and NOP receptor mRNA levels in the forebrain of food deprived rats. 2002

Donata Rodi, and Carlo Polidori, and Gianni Bregola, and Silvia Zucchini, and Michele Simonato, and Maurizio Massi
Department of Clinical and Experimental Medicine, Section of Pharmacology, and Neuroscience Center, University of Ferrara, Ferrara, Italy.

Forebrain injections of nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the NOP opioid receptor, previously referred to as ORL1 or OP4 receptor, stimulate feeding in freely feeding rats, while the NOP receptor antagonist [Nphe(1)]N/OFQ(1-13)NH(2) inhibits food deprivation-induced feeding. To further evaluate whether the N/OFQ-NOP receptor system plays a physiological role in feeding control, the present study evaluated forebrain mRNA levels for the N/OFQ precursor (pro-N/OFQ), as well as for the NOP receptor in food deprived rats. The results obtained show that food deprived rats have lower mRNA levels for the NOP receptor in several forebrain regions; a significant reduction was found in the paraventricular and lateral hypothalamic nuclei and in the central nucleus of the amygdala. Food deprived rats also exhibited lower pro-N/OFQ mRNA levels in the central amygdala. These results suggest that the N/OFQ-NOP receptor system may have a physiological role in feeding control. The observation that food deprivation reduces gene expression of the N/OFQ-NOP receptor system is apparently not consistent with a direct hyperphagic action for N/OFQ. Taking into account that N/OFQ exerts inhibitory actions at cellular level, the present results may be in keeping with the hypothesis that N/OFQ stimulates feeding by inhibiting neurons inhibitory for food intake; under conditions of food deprivation, these neurons may be silent and the N/OFQ-NOP receptor system, which controls them, may also be regulated at a lower level. Consistently, in the present study N/OFQ stimulated food intake in freely feeding rats, but did not further increase feeding in food deprived rats.

UI MeSH Term Description Entries
D007026 Hypothalamic Area, Lateral Area in the hypothalamus bounded medially by the mammillothalamic tract and the anterior column of the FORNIX (BRAIN). The medial edge of the INTERNAL CAPSULE and the subthalamic region form its lateral boundary. It contains the lateral hypothalamic nucleus, tuberomammillary nucleus, lateral tuberal nuclei, and fibers of the MEDIAL FOREBRAIN BUNDLE. Lateral Hypothalamic Area,Lateral Hypothalamic Nucleus,Tuberomammillary Nucleus,Accessory Nucleus of the Ventral Horn,Area Hypothalamica Lateralis,Area Lateralis Hypothalami,Lateral Hypothalamus,Lateral Tuberal Nuclei,Lateral Tuberal Nucleus,Area Hypothalamica Laterali,Area Lateralis Hypothalamus,Area, Lateral Hypothalamic,Areas, Lateral Hypothalamic,Hypothalami, Area Lateralis,Hypothalamic Areas, Lateral,Hypothalamic Nucleus, Lateral,Hypothalamica Laterali, Area,Hypothalamica Lateralis, Area,Hypothalamus, Area Lateralis,Hypothalamus, Lateral,Lateral Hypothalamic Areas,Laterali, Area Hypothalamica,Lateralis Hypothalami, Area,Lateralis Hypothalamus, Area,Lateralis, Area Hypothalamica,Nuclei, Lateral Tuberal,Nucleus, Lateral Hypothalamic,Nucleus, Lateral Tuberal,Nucleus, Tuberomammillary,Tuberal Nuclei, Lateral,Tuberal Nucleus, Lateral
D008297 Male Males
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010286 Paraventricular Hypothalamic Nucleus Nucleus in the anterior part of the HYPOTHALAMUS. Hypothalamic Paraventricular Nucleus,Paraventricular Nucleus,Hypothalamic Nucleus, Paraventricular,Nucleus, Hypothalamic Paraventricular,Nucleus, Paraventricular,Nucleus, Paraventricular Hypothalamic,Paraventricular Nucleus, Hypothalamic
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D005508 Food Deprivation The withholding of food in a structured experimental situation. Deprivation, Food,Deprivations, Food,Food Deprivations
D000094942 Nociceptin Receptor A member of the opioid subfamily of the G PROTEIN-COUPLED RECEPTORS. It is the receptor for the endogenous neuropeptide nociceptin. It functions in modulating NOCICEPTION and the perception of pain. KOR-3 Protein,Kappa3-Related Opioid Receptor,MOR-C Protein,Nociceptin Receptors,OFQ Receptor,OFQ Receptors,ORL1 Receptor,ORL1 Receptors,Opiate Receptor-Like 1,Opioid Receptor-Like Protein,Opioid-Receptor-Like 1 Protein,Orphanin FQ Receptor,Orphanin FQ Receptors,Receptor, Nociceptin,Receptor, OFQ,Receptor, Orphanin FQ,Receptors, ORL1,Noci-R,1 Protein, Opioid-Receptor-Like,1, Opiate Receptor-Like,FQ Receptor, Orphanin,FQ Receptors, Orphanin,MOR C Protein,Noci R,Opioid Receptor Like 1 Protein,Protein, KOR-3,Protein, MOR-C,Protein, Opioid Receptor-Like,Protein, Opioid-Receptor-Like 1,Receptor, Kappa3-Related Opioid,Receptor-Like 1, Opiate,Receptor-Like Protein, Opioid,Receptors, Nociceptin,Receptors, Orphanin FQ
D000097629 Nociceptin A pronociceptive peptide that acts as a specific endogenous agonist to the NOCICEPTIN RECEPTOR. N-OFQ Peptide,Nociceptin-Orphanin FQ,Orphanin FQ
D000679 Amygdala Almond-shaped group of basal nuclei anterior to the INFERIOR HORN OF THE LATERAL VENTRICLE of the TEMPORAL LOBE. The amygdala is part of the limbic system. Amygdaloid Body,Amygdaloid Nuclear Complex,Amygdaloid Nucleus,Archistriatum,Corpus Amygdaloideum,Intercalated Amygdaloid Nuclei,Massa Intercalata,Nucleus Amygdalae,Amygdalae, Nucleus,Amygdaloid Bodies,Amygdaloid Nuclear Complices,Amygdaloid Nuclei, Intercalated,Amygdaloid Nucleus, Intercalated,Amygdaloideum, Corpus,Amygdaloideums, Corpus,Archistriatums,Complex, Amygdaloid Nuclear,Complices, Amygdaloid Nuclear,Corpus Amygdaloideums,Intercalata, Massa,Intercalatas, Massa,Intercalated Amygdaloid Nucleus,Massa Intercalatas,Nuclear Complex, Amygdaloid,Nuclear Complices, Amygdaloid,Nuclei, Intercalated Amygdaloid,Nucleus, Amygdaloid,Nucleus, Intercalated Amygdaloid

Related Publications

Donata Rodi, and Carlo Polidori, and Gianni Bregola, and Silvia Zucchini, and Michele Simonato, and Maurizio Massi
January 2015, Vitamins and hormones,
Donata Rodi, and Carlo Polidori, and Gianni Bregola, and Silvia Zucchini, and Michele Simonato, and Maurizio Massi
August 2005, Peptides,
Donata Rodi, and Carlo Polidori, and Gianni Bregola, and Silvia Zucchini, and Michele Simonato, and Maurizio Massi
January 2011, Current topics in medicinal chemistry,
Donata Rodi, and Carlo Polidori, and Gianni Bregola, and Silvia Zucchini, and Michele Simonato, and Maurizio Massi
January 2018, Current medicinal chemistry,
Donata Rodi, and Carlo Polidori, and Gianni Bregola, and Silvia Zucchini, and Michele Simonato, and Maurizio Massi
July 2000, Peptides,
Donata Rodi, and Carlo Polidori, and Gianni Bregola, and Silvia Zucchini, and Michele Simonato, and Maurizio Massi
December 2008, Intensive care medicine,
Donata Rodi, and Carlo Polidori, and Gianni Bregola, and Silvia Zucchini, and Michele Simonato, and Maurizio Massi
January 2007, Biological psychiatry,
Donata Rodi, and Carlo Polidori, and Gianni Bregola, and Silvia Zucchini, and Michele Simonato, and Maurizio Massi
December 2006, Peptides,
Donata Rodi, and Carlo Polidori, and Gianni Bregola, and Silvia Zucchini, and Michele Simonato, and Maurizio Massi
November 2021, International journal of molecular sciences,
Donata Rodi, and Carlo Polidori, and Gianni Bregola, and Silvia Zucchini, and Michele Simonato, and Maurizio Massi
February 2022, GeroScience,
Copied contents to your clipboard!