Interactive role of tyrosine kinase, protein kinase C, and Rho/Rho kinase systems in the mechanotransduction of vascular smooth muscles. 2003

Koichi Nakayama, and Kazuo Obara, and Yoshiyuki Tanabe, and Maki Saito, and Tomohisa Ishikawa, and Shigeru Nishizawa
Department of Pharmacology, University of Shizuoka, Shizuoka 422-8526, Japan. nakyamk@ys7.u-shizuoka-ken.ac.jp

Blood vessels are always subjected to hemodynamic stresses including blood pressure and blood flow. The cerebral artery is particularly sensitive to hemodynamic stresses such as pressure and stretch, and shows contractions that are myogenic in nature; i.e., the mechanical response is generated by the vascular smooth muscle itself. The artery constricts in response to an increase in intraluminal pressure, and dilates in response to a decrease in the intraluminal pressure. We provide herein some insights into the mechanotransduction of vascular tissue; i.e., we discuss how the tissue is receptive to mechanical force and how the latter induces the specific signals leading to myogenic contraction in terms of mechanosensor action and subsequent intracellular signaling. The interactive role of tyrosine kinase, protein kinase C, and Rho/Rho-kinase systems in the mechanotransduction process is discussed, which systems also seem to play an important role in the development of experimental cerebral vasospasm. The study of the mechanotransduction in vascular tissue may aid in clarifying the mechanisms underlying vasospastic episodes and pathologic remodeling in cardiovascular diseases, and may potentially have therapeutic consequences.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002536 Cerebral Arteries The arterial blood vessels supplying the CEREBRUM. Arteries, Cerebral,Artery, Cerebral,Cerebral Artery
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical
D017346 Protein Serine-Threonine Kinases A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors. Protein-Serine-Threonine Kinases,Serine-Threonine Protein Kinase,Serine-Threonine Protein Kinases,Protein-Serine Kinase,Protein-Serine-Threonine Kinase,Protein-Threonine Kinase,Serine Kinase,Serine-Threonine Kinase,Serine-Threonine Kinases,Threonine Kinase,Kinase, Protein-Serine,Kinase, Protein-Serine-Threonine,Kinase, Protein-Threonine,Kinase, Serine-Threonine,Kinases, Protein Serine-Threonine,Kinases, Protein-Serine-Threonine,Kinases, Serine-Threonine,Protein Kinase, Serine-Threonine,Protein Kinases, Serine-Threonine,Protein Serine Kinase,Protein Serine Threonine Kinase,Protein Serine Threonine Kinases,Protein Threonine Kinase,Serine Threonine Kinase,Serine Threonine Kinases,Serine Threonine Protein Kinase,Serine Threonine Protein Kinases
D047908 Intracellular Signaling Peptides and Proteins Proteins and peptides that are involved in SIGNAL TRANSDUCTION within the cell. Included here are peptides and proteins that regulate the activity of TRANSCRIPTION FACTORS and cellular processes in response to signals from CELL SURFACE RECEPTORS. Intracellular signaling peptide and proteins may be part of an enzymatic signaling cascade or act through binding to and modifying the action of other signaling factors. Intracellular Signaling Peptides,Intracellular Signaling Proteins,Peptides, Intracellular Signaling,Proteins, Intracellular Signaling,Signaling Peptides, Intracellular,Signaling Proteins, Intracellular
D054460 rho-Associated Kinases A group of intracellular-signaling serine threonine kinases that bind to RHO GTP-BINDING PROTEINS. They were originally found to mediate the effects of rhoA GTP-BINDING PROTEIN on the formation of STRESS FIBERS and FOCAL ADHESIONS. Rho-associated kinases have specificity for a variety of substrates including MYOSIN-LIGHT-CHAIN PHOSPHATASE and LIM KINASES. rho-Associated Kinase,ROCK Protein Kinases,ROCK-I Protein Kinase,ROCK-II Protein Kinase,ROK Kinase,p160 rhoA-Binding Kinase ROKalpha,p160ROCK,rho-Associated Coiled-Coil Containing Protein Kinase 1,rho-Associated Coiled-Coil Containing Protein Kinase 2,rho-Associated Coiled-Coil Kinase,rho-Associated Kinase 1,rho-Associated Kinase 2,rho-Associated Kinase alpha,rho-Associated Kinase beta,rho-Associated Protein Kinase alpha,rho-Associated Protein Kinase beta,rho-Kinase,Coiled-Coil Kinase, rho-Associated,Protein Kinases, ROCK,ROCK I Protein Kinase,ROCK II Protein Kinase,p160 rhoA Binding Kinase ROKalpha,rho Associated Coiled Coil Containing Protein Kinase 1,rho Associated Coiled Coil Containing Protein Kinase 2,rho Associated Coiled Coil Kinase,rho Associated Kinase,rho Associated Kinase 1,rho Associated Kinase 2,rho Associated Kinase alpha,rho Associated Kinase beta,rho Associated Kinases,rho Associated Protein Kinase alpha,rho Associated Protein Kinase beta,rho Kinase

Related Publications

Koichi Nakayama, and Kazuo Obara, and Yoshiyuki Tanabe, and Maki Saito, and Tomohisa Ishikawa, and Shigeru Nishizawa
January 2001, British journal of pharmacology,
Koichi Nakayama, and Kazuo Obara, and Yoshiyuki Tanabe, and Maki Saito, and Tomohisa Ishikawa, and Shigeru Nishizawa
January 2007, Fiziolohichnyi zhurnal (Kiev, Ukraine : 1994),
Koichi Nakayama, and Kazuo Obara, and Yoshiyuki Tanabe, and Maki Saito, and Tomohisa Ishikawa, and Shigeru Nishizawa
October 1992, Sheng li ke xue jin zhan [Progress in physiology],
Koichi Nakayama, and Kazuo Obara, and Yoshiyuki Tanabe, and Maki Saito, and Tomohisa Ishikawa, and Shigeru Nishizawa
July 2011, Trends in pharmacological sciences,
Koichi Nakayama, and Kazuo Obara, and Yoshiyuki Tanabe, and Maki Saito, and Tomohisa Ishikawa, and Shigeru Nishizawa
April 2001, American journal of physiology. Lung cellular and molecular physiology,
Koichi Nakayama, and Kazuo Obara, and Yoshiyuki Tanabe, and Maki Saito, and Tomohisa Ishikawa, and Shigeru Nishizawa
August 1990, American journal of hypertension,
Koichi Nakayama, and Kazuo Obara, and Yoshiyuki Tanabe, and Maki Saito, and Tomohisa Ishikawa, and Shigeru Nishizawa
February 2003, Current hypertension reports,
Koichi Nakayama, and Kazuo Obara, and Yoshiyuki Tanabe, and Maki Saito, and Tomohisa Ishikawa, and Shigeru Nishizawa
June 1996, Circulation,
Koichi Nakayama, and Kazuo Obara, and Yoshiyuki Tanabe, and Maki Saito, and Tomohisa Ishikawa, and Shigeru Nishizawa
April 2010, British journal of pharmacology,
Koichi Nakayama, and Kazuo Obara, and Yoshiyuki Tanabe, and Maki Saito, and Tomohisa Ishikawa, and Shigeru Nishizawa
May 1995, Journal of hypertension,
Copied contents to your clipboard!