A new vascular polyester prosthesis impregnated with cross-linked dextran. 2002

Delphine Machy, and Patrick Carteron, and Jacqueline Jozefonvicz
Laboratoire de Recherches sur les Macromolécules, FRE 2314 CNRS, Université Paris 13, Avenue J.-B. Clément, 93430 Villetaneuse, France. machy@galilee.univ-paris13.fr

It is essential that a synthetic vascular graft is preclotting prior to implantation in order to prevent blood leaking through the graft wall. We have impregnated a knitted polyester prosthesis with cross-linked dextran. The aim of this study was to develop a process for obtaining an impervious prosthesis and to compare the characteristics of this dextran-impregnated graft with those of a commercially available collagen-impregnated graft. This new vascular prosthesis was coated with dextran; sodium trimetaphosphate was utilized as the cross-linking agent. In an attempt to determine the optimal conditions for impregnation, the dynamic viscosity of the dextran solution was measured during the cross-linking reaction. The results suggest that the dynamic viscosity is correlated with the concentrations of dextran, sodium hydroxide, and sodium trimetaphosphate. The effect of temperature on the dynamic viscosity was also investigated. The water permeability, the coating weight, and the structure of the dextran-impregnated graft were compared with those of a collagen-impregnated prosthesis. The water permeability of the vascular grafts was reduced by dextran impregnation, from 1010 ml/min per cm2 for the control to 0.04 ml/min per cm2 under standard testing conditions. The dextran coating is capable of rendering the graft impervious to water. The coating weight of the graft treated with dextran was approximately the same as the weight of the collagen-impregnated graft. Finally, the morphology of the prosthetic wall was analyzed using scanning electron microscopy. The promotion of endothelial cell recovery was only observed for the polyester grafts treated with dextran or collagen.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D011091 Polyesters Polymers of organic acids and alcohols, with ester linkages--usually polyethylene terephthalate; can be cured into hard plastic, films or tapes, or fibers which can be woven into fabrics, meshes or velours. Polyester
D011122 Polyphosphates Linear polymers in which orthophosphate residues are linked with energy-rich phosphoanhydride bonds. They are found in plants, animals, and microorganisms. Polyphosphate
D001807 Blood Vessel Prosthesis Device constructed of either synthetic or biological material that is used for the repair of injured or diseased blood vessels. Vascular Prosthesis,Blood Vessel Prostheses,Tissue-Engineered Vascular Graft,Graft, Tissue-Engineered Vascular,Grafts, Tissue-Engineered Vascular,Prostheses, Blood Vessel,Prostheses, Vascular,Prosthesis, Blood Vessel,Prosthesis, Vascular,Tissue Engineered Vascular Graft,Tissue-Engineered Vascular Grafts,Vascular Graft, Tissue-Engineered,Vascular Grafts, Tissue-Engineered,Vascular Prostheses,Vessel Prostheses, Blood,Vessel Prosthesis, Blood
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Delphine Machy, and Patrick Carteron, and Jacqueline Jozefonvicz
October 1996, European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery,
Delphine Machy, and Patrick Carteron, and Jacqueline Jozefonvicz
March 1997, Annals of vascular surgery,
Delphine Machy, and Patrick Carteron, and Jacqueline Jozefonvicz
January 1989, Biomaterials,
Delphine Machy, and Patrick Carteron, and Jacqueline Jozefonvicz
January 1988, European surgical research. Europaische chirurgische Forschung. Recherches chirurgicales europeennes,
Delphine Machy, and Patrick Carteron, and Jacqueline Jozefonvicz
January 1986, ASAIO transactions,
Delphine Machy, and Patrick Carteron, and Jacqueline Jozefonvicz
September 1995, [Zasshi] [Journal]. Nihon Kyobu Geka Gakkai,
Delphine Machy, and Patrick Carteron, and Jacqueline Jozefonvicz
October 1995, Biomaterials,
Delphine Machy, and Patrick Carteron, and Jacqueline Jozefonvicz
April 2007, International journal of surgery (London, England),
Delphine Machy, and Patrick Carteron, and Jacqueline Jozefonvicz
January 1993, Clinical materials,
Delphine Machy, and Patrick Carteron, and Jacqueline Jozefonvicz
December 1993, Artificial organs,
Copied contents to your clipboard!