Characterization of incisional wound healing in inducible nitric oxide synthase knockout mice. 2002

Daniel Most, and David T Efron, and Han Ping Shi, and Udaya S Tantry, and Adrian Barbul
Departments of Surgery, the Johns Hopkins Medical Institutions, and the Sinai Hospital of Baltimore, Baltimore, MD 21215, USA.

BACKGROUND Excisional wound healing in inducible nitric oxide synthase knockout (iNOS-KO) mice has been previously shown to be impaired compared with their background strain controls. Incisional wounds were created in this experiment in both types of animals and paradoxically were found to heal with the same rapidity and breaking strength in both groups. METHODS Dorsal 2.5 cm incisional wounds were created in iNOS-KO mice, as well as their parental strain controls (C57BL/6J). Standardized polyvinyl alcohol sponges were implanted in the wounds to allow for measurement of collagen deposition. Animals were harvested on postoperative days (PODs) 3, 5, 7, 10, 14, and 28, and their wounds subjected to tensiometric breaking strength analysis. Nonisotopic in situ hybridization quantitative analysis for iNOS, endothelial NOS (eNOS), basic fibroblast growth factor (bFGF), transforming growth factor-beta1 (TGF-beta1), vascular endothelial growth factor (VEGF), and interleukin-4 (IL-4) expression in the wounds was performed. Hydroxyproline levels were quantitated in the harvested polyvinyl alcohol sponges. Data were analyzed with the Students t test. RESULTS No significant differences were found in breaking strengths or levels of hydroxyproline (and thus collagen) in iNOS-KO versus wild-type wounds at all tested time points. Flawed iNOS expression levels in iNOS-KO animals were similar to (functional) iNOS expression in wild-types. eNOS and bFGF expression nearly doubled on POD 7 in iNOS-KO incisions (P =.002, and.002), respectively and remained 200% to 300% elevated thereafter. TGF-beta1 expression was increased approximately 50% to 100% in iNOS-KO wounds on PODs 5 and 7 (P =.006 and.01, respectively). VEGF and IL-4 expression was elevated by 25% to 100% in wild-type compared with iNOS-KO animals at all time points (P <.01). CONCLUSIONS The overexpression of TGF-beta1 and eNOS may represent mechanisms in iNOS-KO mice to compensate for their loss of functional iNOS, resulting in incisional wound healing equivalent to controls. Their impaired expression of VEGF and IL-4, on the other hand, may partially explain the delayed excisional wound healing noted in these animals.

UI MeSH Term Description Entries
D008222 Lymphokines Soluble protein factors generated by activated lymphocytes that affect other cells, primarily those involved in cellular immunity. Lymphocyte Mediators,Mediators, Lymphocyte
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D006909 Hydroxyproline A hydroxylated form of the imino acid proline. A deficiency in ASCORBIC ACID can result in impaired hydroxyproline formation. Oxyproline,4-Hydroxyproline,cis-4-Hydroxyproline,4 Hydroxyproline,cis 4 Hydroxyproline
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D013529 Surgical Wound Dehiscence Pathologic process consisting of a partial or complete disruption of the layers of a surgical wound. Dehiscence, Surgical Wound,Wound Dehiscence, Surgical
D013718 Tensile Strength The maximum stress a material subjected to a stretching load can withstand without tearing. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed, p2001) Strength, Tensile,Strengths, Tensile,Tensile Strengths
D014945 Wound Healing Restoration of integrity to traumatized tissue. Healing, Wound,Healings, Wound,Wound Healings
D015847 Interleukin-4 A soluble factor produced by activated T-LYMPHOCYTES that induces the expression of MHC CLASS II GENES and FC RECEPTORS on B-LYMPHOCYTES and causes their proliferation and differentiation. It also acts on T-lymphocytes, MAST CELLS, and several other hematopoietic lineage cells. B-Cell Growth Factor-I,B-Cell Stimulatory Factor-1,Binetrakin,IL-4,Mast Cell Growth Factor-2,B Cell Stimulatory Factor-1,B-Cell Growth Factor-1,B-Cell Proliferating Factor,B-Cell Stimulating Factor-1,B-Cell Stimulatory Factor 1,BCGF-1,BSF-1,IL4,MCGF-2,B Cell Growth Factor 1,B Cell Growth Factor I,B Cell Proliferating Factor,B Cell Stimulating Factor 1,B Cell Stimulatory Factor 1,Interleukin 4,Mast Cell Growth Factor 2
D016212 Transforming Growth Factor beta A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins. Bone-Derived Transforming Growth Factor,Platelet Transforming Growth Factor,TGF-beta,Milk Growth Factor,TGFbeta,Bone Derived Transforming Growth Factor,Factor, Milk Growth,Growth Factor, Milk

Related Publications

Daniel Most, and David T Efron, and Han Ping Shi, and Udaya S Tantry, and Adrian Barbul
May 2004, The Journal of urology,
Daniel Most, and David T Efron, and Han Ping Shi, and Udaya S Tantry, and Adrian Barbul
January 2017, Dermatology research and practice,
Daniel Most, and David T Efron, and Han Ping Shi, and Udaya S Tantry, and Adrian Barbul
April 1998, Infection and immunity,
Daniel Most, and David T Efron, and Han Ping Shi, and Udaya S Tantry, and Adrian Barbul
May 2009, The Journal of surgical research,
Daniel Most, and David T Efron, and Han Ping Shi, and Udaya S Tantry, and Adrian Barbul
January 1999, Life sciences,
Daniel Most, and David T Efron, and Han Ping Shi, and Udaya S Tantry, and Adrian Barbul
April 2009, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
Daniel Most, and David T Efron, and Han Ping Shi, and Udaya S Tantry, and Adrian Barbul
January 2018, PeerJ,
Daniel Most, and David T Efron, and Han Ping Shi, and Udaya S Tantry, and Adrian Barbul
September 1999, The American journal of physiology,
Daniel Most, and David T Efron, and Han Ping Shi, and Udaya S Tantry, and Adrian Barbul
December 2019, Journal of cellular physiology,
Daniel Most, and David T Efron, and Han Ping Shi, and Udaya S Tantry, and Adrian Barbul
January 2007, Neurological research,
Copied contents to your clipboard!