Edwardsiella ictaluri invasion of IEC-6, Henle 407, fathead minnow and channel catfish enteric epithelial cells. 2002

Ramona T Skirpstunas, and Thomas J Baldwin
Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164, USA. rskirps@cc.usu.edu

Invasion of Edwardsiella ictaluri into cultured mammalian, fish and enzymatically harvested catfish enteric epithelial cells is described. Gentamicin survival assays were used to demonstrate the ability of this catfish pathogen to invade IEC-6 (origin: rat small intestinal epithelium), Henle 407 (origin: human embryonic intestinal epithelium), fathead minnow (FHM, minnow epithelial cells) and trypsin/pepsin-harvested channel catfish enteric epithelial cells. Invasion of all cell types occurred within 2 h of contact at 26 degrees C, in contrast to Escherichia coli DH5 alpha, which did not invade cells tested. Eight Edwardsiella ictaluri isolates from diseased catfish and the ATCC (American Type Culture Collection) strain were evaluated for invasion efficiency using FHM cells. All isolates were invasive, but at differing efficiencies. Invasion blocking assays using chemical blocking agents were performed on a single isolate (LA 89-9) using IEC-6 epithelial cells. Preincubation of IEC-6 cells with cytochalasin D (microfilament depolymerizer) and monodansylcadaverine (blocks receptor-mediated endocytosis) significantly reduced invasion by E. ictaluri, whereas exposure to colchicine (microtubule depolymerizer) had no effect on bacterial internalization. Results indicate that actin polymerization and receptor-mediated endocytosis are involved in uptake of E. ictaluri by IEC-6 epithelial cells. Invasion trials using freshly harvested cells from the intestine of the natural host, Ictalurus punctatus, show that invasion occurs, but at a low efficiency. This is possibly due to loss of outer membrane receptors during enzymatic cell harvest. This study provides the first documentation of the invasion of cultured mammalian and fish cells by E. ictaluri, and identifies possible mechanisms used for intracellular access. Additionally, the study describes several functional in vitro invasion models using commercially available cell lines as well as cells from the natural host (channel catfish, I. punctatus).

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D002103 Cadaverine A foul-smelling diamine formed by bacterial DECARBOXYLATION of LYSINE. It is also an intermediate secondary metabolite in lysine-derived alkaloid biosynthetic pathways (e.g., QUINOLIZIDINES and LYCOPODIUM). 1,5-Pentanediamine,BioDex 1,Pentamethylenediamine,1,5 Pentanediamine
D002397 Catfishes Common name of the order Siluriformes. This order contains many families and over 2,000 species, including venomous species. Heteropneustes and Plotosus genera have dangerous stings and are aggressive. Most species are passive stingers. Eremophilus mutisii,Heteropneustes,Plotosus,Siluriformes,Arius,Catfish,Colombian Catfish,Catfish, Colombian
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003078 Colchicine A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). Colchicine, (+-)-Isomer,Colchicine, (R)-Isomer
D003530 Cyprinidae A family of freshwater fish comprising the minnows or CARPS. Barbels,Chub,Dace,Minnows,Roach (Fish),Shiner,Tench,Tinca,Barbus,Rutilus rutilus,Tinca tinca,Chubs,Shiners,Tinca tincas,tinca, Tinca
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D004756 Enterobacteriaceae Infections Infections with bacteria of the family ENTEROBACTERIACEAE. Enterobacterial Infections,Cronobacter Infections,Infections, Enterobacteriaceae,Infections, Enterobacterial,Cronobacter Infection,Enterobacteriaceae Infection,Enterobacterial Infection,Infection, Cronobacter,Infection, Enterobacteriaceae,Infection, Enterobacterial,Infections, Cronobacter
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell

Related Publications

Ramona T Skirpstunas, and Thomas J Baldwin
September 1997, Veterinary immunology and immunopathology,
Ramona T Skirpstunas, and Thomas J Baldwin
June 2015, Journal of aquatic animal health,
Ramona T Skirpstunas, and Thomas J Baldwin
January 1999, Advances in veterinary medicine,
Ramona T Skirpstunas, and Thomas J Baldwin
January 1991, Developmental and comparative immunology,
Ramona T Skirpstunas, and Thomas J Baldwin
June 2008, Journal of applied microbiology,
Ramona T Skirpstunas, and Thomas J Baldwin
April 2012, FEMS microbiology letters,
Ramona T Skirpstunas, and Thomas J Baldwin
January 2005, Developmental and comparative immunology,
Ramona T Skirpstunas, and Thomas J Baldwin
April 1990, Journal of wildlife diseases,
Ramona T Skirpstunas, and Thomas J Baldwin
January 2011, Virology journal,
Copied contents to your clipboard!