Development of the Drosophila genital disc requires interactions between its segmental primordia. 2003

Nicole Gorfinkiel, and Lucas Sánchez, and Isabel Guerrero
Centro de Biologia Molecular Severo Ochoa, C.S.I.C., Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid, Spain.

In both sexes, the Drosophila genital disc comprises three segmental primordia: the female genital primordium derived from segment A8, the male genital primordium derived from segment A9 and the anal primordium derived from segments A10-11. Each segmental primordium has an anterior (A) and a posterior (P) compartment, the P cells of the three segments being contiguous at the lateral edges of the disc. We show that Hedgehog (Hh) expressed in the P compartment differentially signals A cells at the AP compartment border and A cells at the segmental border. As in the wing imaginal disc, cell lineage restriction of the AP compartment border is defined by Hh signalling. There is also a lineage restriction barrier at the segmental borders, even though the P compartment cells of the three segments converge in the lateral areas of the disc. Lineage restriction between segments A9 and A10-11 depends on factors other than the Hh, En and Hox genes. The segmental borders, however, can be permeable to some morphogenetic signals. Furthermore, cell ablation experiments show that the presence of all primordia (either the anal or the genital primordium) during development are required for normal development of genital disc. Collectively, these findings suggest that interaction between segmental primordia is required for the normal development of the genital disc.

UI MeSH Term Description Entries
D008297 Male Males
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005260 Female Females
D005835 Genitalia The external and internal organs involved in the functions of REPRODUCTION. Accessory Sex Organs,Genital Organs,Sex Organs, Accessory,Genital System,Genitals,Reproductive Organs,Reproductive System,Accessory Sex Organ,Genital,Genital Organ,Genital Systems,Organ, Accessory Sex,Organ, Genital,Organ, Reproductive,Organs, Accessory Sex,Organs, Genital,Organs, Reproductive,Reproductive Organ,Reproductive Systems,Sex Organ, Accessory,System, Genital,System, Reproductive,Systems, Genital,Systems, Reproductive
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Nicole Gorfinkiel, and Lucas Sánchez, and Isabel Guerrero
August 2001, BioEssays : news and reviews in molecular, cellular and developmental biology,
Nicole Gorfinkiel, and Lucas Sánchez, and Isabel Guerrero
October 1997, Development genes and evolution,
Nicole Gorfinkiel, and Lucas Sánchez, and Isabel Guerrero
June 1969, Strahlentherapie,
Nicole Gorfinkiel, and Lucas Sánchez, and Isabel Guerrero
January 1972, The Journal of experimental zoology,
Nicole Gorfinkiel, and Lucas Sánchez, and Isabel Guerrero
January 2019, The International journal of developmental biology,
Nicole Gorfinkiel, and Lucas Sánchez, and Isabel Guerrero
February 1966, Genetics,
Nicole Gorfinkiel, and Lucas Sánchez, and Isabel Guerrero
February 2001, Development (Cambridge, England),
Nicole Gorfinkiel, and Lucas Sánchez, and Isabel Guerrero
May 2009, Developmental biology,
Nicole Gorfinkiel, and Lucas Sánchez, and Isabel Guerrero
September 1968, Genetics,
Nicole Gorfinkiel, and Lucas Sánchez, and Isabel Guerrero
August 2005, Journal of cell science,
Copied contents to your clipboard!